Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(7): e17664, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37455950

ABSTRACT

Great waste production alongside limited natural resources represents huge environmental and economic problems worldwide. Sustainable waste management and industrial production can reduce pollution and gain some economic benefits. Eco-friendly thermal insulators such as foam glasses can be produced using secondary raw materials in open-loop recycling. Foam glasses were successfully produced using green bottle glass and sugar beet factory lime (SBFL), CaCO3-rich waste as a novel foaming agent. Glass powder was mixed with different amounts of SBFL, uniaxially pressed at 20 MPa, and sintered at different temperatures. The influence of sintering temperature and the addition of a foaming agent was examined. Obtained samples were mechanically, thermally, and microstructurally characterized. Results showed that samples sintered at 800 °C have the best properties. Obtained foam glasses can be used in a variety of industries where thermal insulation, non-flammability, and non-toxic materials are required.

2.
Food Technol Biotechnol ; 60(1): 67-79, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35440876

ABSTRACT

Research background: In the recent years, considerable attention has been given to selenium status since its deficiency is linked with various disorders and affects at least 13% of world population. Additionally, mushrooms are known to possess pronounced capacity for absorption of various micronutrients, including Se, from soil/substrate. Here, we investigate the possibility of using Se-rich zeolitic tuff as a supplement for production of selenized mushroom. Furthermore, the impact of the enrichment on the activity of antioxidant enzymes and biological potential of Coriolus versicolor medicinal mushroom is studied. Experimental approach: Se(IV)- and Se(VI)-modified natural zeolitic tuff from the Serbian deposit Zlatokop was used as supplement for mushroom cultivation. To examine the effectiveness of selenium enrichment, we determined total selenium with inductively coupled plasma mass spectrometry (ICP-MS), together with the activity of antioxidant enzymes in fresh fruiting bodies and biological potential of methanolic extracts. Antioxidant activity was evaluated using the appropriate tests for: inhibition of lipid peroxidation, DPPH free radical scavenging assay, Fe(III)-reducing antioxidant power assay and ability of chelating Fe2+ ions. The antibacterial activity against foodborne pathogens was measured by broth microdilution assay. Additionally, chemical composition of the prepared extracts was studied using UV-Vis and Fourier transform infrared (FTIR) spectroscopy. Results and conclusions: Content of selenium detected in biofortified C. versicolor was even 470 times higher than in control on dry mass basis ((140.7±3.8) vs (0.3±0.1) µg/g), proving that Se-rich zeolitic tuff is an excellent supplement for mushroom production. Furthermore, the results of monitoring the activity of antioxidant enzymes revealed that most of the Se-enriched mushrooms exhibited higher superoxide dismutase (SOD) and catalase (CAT) and lower glutathione peroxidase (GSH-Px) activities than control. Due to higher amounts of enzymes, which can quickly catalyze the reduction of superoxide radicals, the quality of selenium-enriched mushrooms is preserved for a longer period of time. Investigation of biological potential indicated that Se-enriched mushroom methanolic extracts, generally, expressed enhanced antioxidant properties. Additionally, extracts showed antibacterial activity against all tested pathogenic microorganisms. Novelty and scientific contribution: Cultivation of mushrooms on Se-enriched zeolitic tuff is a new technological approach for obtaining Se-fortified food/supplements with enhanced antioxidant and antibacterial activities.

3.
J Hazard Mater ; 172(2-3): 1450-7, 2009 Dec 30.
Article in English | MEDLINE | ID: mdl-19720456

ABSTRACT

The natural zeolite tuff from the Vranjska Banja deposit (Serbia) has been studied as sorbent for Mn(II) ions from aqueous solutions. The zeolite sample containing mainly clinoptilolite (more than 70%) removes Mn(II) ions by ion-exchange process, which was confirmed by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDXS). XPS showed that there is no surface accumulation of Mn but an almost uniform distribution inside the sorbent; EDXS confirmed that Mn(II) replaced the clinoptilolite Na counter ions. The sorption isotherms were studied at 298 K by batch experiments showing that the Mn(II) removal is best described by the Langmuir-Freundlich or Sips model. The kinetics followed the pseudo-second-order model, the activation energy being 128 kJ mol(-1). The intra-particle diffusion is not the rate-controlling step in the sorption of Mn(II) on clinoptilolite. Thermodynamic data suggest spontaneity of the endothermic ion-exchange process in the 298-338 K range.


Subject(s)
Manganese/isolation & purification , Water Pollutants, Chemical/isolation & purification , Zeolites/chemistry , Adsorption , Ion Exchange , Kinetics , Serbia , Thermodynamics , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...