Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Obes (Lond) ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858465

ABSTRACT

Maternal obesity is associated with lower infant resting energy expenditure (REE), predisposing them to more rapid weight and adiposity gain through early infancy. Maternal exercise (ME) decreases infant adiposity and risk for childhood obesity; however, it remains unknown if this is in part mediated by changes in infant energy expenditure. Thus, we measured REE in 1-month-old infants from pregnant individuals who performed moderate-intensity exercise during pregnancy and compared it to infants from non-exercising controls. We observed higher oxygen respiratory rates (p = 0.003 for VO2 and p = 0.007 for VCO2) and REE (p = 0.002) in infants exposed to exercise in utero, independent of any differences in infant body composition. Furthermore, maternal BMI was significantly and inversely associated with infant REE in the control (r = -0.86, R2 = 0.74, p = 0.029), but not the exercise group (r = 0.33, R2 = 0.11, p = 0.473). Together, these findings associate ME with increasing infant energy expenditure which could be protective of subsequent infant adiposity gain. Clinical Trial: ClinicalTrials.gov Identifier: NCT03838146 and NCT04805502.

2.
Birth Defects Res ; 116(4): e2340, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38659157

ABSTRACT

BACKGROUND: Prenatal exercise improves birth outcomes, but research into exercise dose-response effects is limited. METHODS: This study is a retrospective, secondary analysis of pooled data from three blinded, prospective, randomized controlled trials. Prenatal exercise frequency, intensity, type, time, and volume (FITT-V) were assessed in supervised sessions throughout pregnancy. Gestational age (GA), neonatal resting heart rate (rHR), morphometrics (body circumferences, weight-to-length and ponderal index) Apgar and reflex scores, and placental measures were obtained at birth. Stepwise regressions and Pearson correlations determined associations between FITT-V and birth outcomes. RESULTS: Prenatal exercise frequency reduces ponderal index (R2 = 0.15, F = 2.76, p = .05) and increased total number of reflexes present at birth (R2 = 0.24, F = 7.89, p < .001), while exercise intensity was related to greater gestational age and birth length (R2 = 0.08, F = 3.14; R2 = 0.12, F = 3.86, respectively; both p = .04); exercise weekly volume was associated with shorter hospital stay (R2 = 0.24, F = 4.73, p = .01). Furthermore, exercise type was associated with placenta size (R2 = 0.47, F = 3.51, p = .01). CONCLUSIONS: Prenatal exercise is positively related to birth and placental outcomes in a dose-dependent manner.


Subject(s)
Exercise , Gestational Age , Pregnancy Outcome , Humans , Female , Pregnancy , Exercise/physiology , Adult , Infant, Newborn , Retrospective Studies , Birth Weight , Placenta/physiology , Prospective Studies
3.
Physiol Rep ; 12(9): e16028, 2024 May.
Article in English | MEDLINE | ID: mdl-38684442

ABSTRACT

Maternal exercise (ME) has been established as a useful non-pharmacological intervention to improve infant metabolic health; however, mechanistic insight behind these adaptations remains mostly confined to animal models. Infant mesenchymal stem cells (MSCs) give rise to infant tissues (e.g., skeletal muscle), and remain involved in mature tissue maintenance. Importantly, these cells maintain metabolic characteristics of an offspring donor and provide a model for the investigation of mechanisms behind infant metabolic health improvements. We used undifferentiated MSC to investigate if ME affects infant MSC mitochondrial function and insulin action, and if these adaptations are associated with lower infant adiposity. We found that infants from exercising mothers have improvements in MSC insulin signaling related to higher MSC respiration and fat oxidation, and expression and activation of energy-sensing and redox-sensitive proteins. Further, we found that infants exposed to exercise in utero were leaner at 1 month of age, with a significant inverse correlation between infant MSC respiration and infant adiposity at 6 months of age. These data suggest that infants from exercising mothers are relatively leaner, and this is associated with higher infant MSC mitochondrial respiration, fat use, and insulin action.


Subject(s)
Body Composition , Exercise , Insulin , Mesenchymal Stem Cells , Mitochondria , Humans , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Exercise/physiology , Mitochondria/metabolism , Insulin/metabolism , Infant , Pregnancy , Male , Body Composition/physiology , Adult , Infant, Newborn , Adiposity/physiology
4.
Am J Physiol Endocrinol Metab ; 326(3): E398-E406, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38324260

ABSTRACT

Resveratrol, a natural polyphenol compound contained in numerous plants, has been proposed as a treatment for obesity-related disease processes such as insulin resistance. However, in humans there are conflicting results concerning the efficacy of resveratrol in improving insulin action; the purpose of the present study was to determine whether obesity status (lean, severely obese) affects the response to resveratrol in human skeletal muscle. Primary skeletal muscle cells were derived from biopsies obtained from age-matched lean and insulin-resistant women with severe obesity and incubated with resveratrol (1 µM) for 24 h. Insulin-stimulated glucose oxidation and incorporation into glycogen, insulin signal transduction, and energy-sensitive protein targets [AMP-activated protein kinase (AMPK), Sirt1, and PGC1α] were analyzed. Insulin-stimulated glycogen synthesis, glucose oxidation, and AMPK phosphorylation increased with resveratrol incubation compared with the nonresveratrol conditions (main treatment effect for resveratrol). Resveratrol further increased IRS1, Akt, and TBC1D4 insulin-stimulated phosphorylation and SIRT1 content in myotubes from lean women, but not in women with severe obesity. Resveratrol improves insulin action in primary human skeletal myotubes derived from lean women and women with severe obesity. In women with obesity, these improvements may be associated with enhanced AMPK phosphorylation with resveratrol treatment.NEW & NOTEWORTHY A physiologically relevant dose of resveratrol increases insulin-stimulated glucose oxidation and glycogen synthesis in myotubes from individuals with severe obesity. Furthermore, resveratrol improved insulin signal transduction in myotubes from lean individuals but not from individuals with obesity. Activation of AMPK plays a role in resveratrol-induced improvements in glucose metabolism in individuals with severe obesity.


Subject(s)
Insulin Resistance , Obesity, Morbid , Humans , Female , Obesity, Morbid/metabolism , Resveratrol/pharmacology , Sirtuin 1/metabolism , AMP-Activated Protein Kinases/metabolism , Obesity/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Insulin/pharmacology , Insulin/metabolism , Glucose/metabolism , Insulin Resistance/physiology , Glycogen/metabolism
5.
Birth Defects Res ; 115(17): 1581-1597, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37735993

ABSTRACT

The current recommendations for prenatal exercise dose align with those from the American College of Sports Medicine; 150 min of moderate intensity every week of pregnancy. However, recent works suggest there may be a dose-dependent beneficial effect for mother and offspring; maternal and offspring health outcomes respond differently to low, medium, and high doses of prenatal exercise. It is, therefore, our aim to summarize the published evidence (years 1950-2023) for five metrics of prenatal exercise training commonly reported, that is, "FITT-V": Frequency (number of sessions), Intensity (metabolic equivalents "METs"), Time (duration of sessions), Type (exercise mode), Volume (exercise MET*mins). The target audience includes clinicians and health care professionals, as well as exercise professionals and physiologists. Data suggest that moderate exercise frequency (3-4 times weekly) appears safe and efficacious for mother and offspring, while there is contradictory evidence for the safety and further benefit of increased frequency beyond 5 sessions per week. Moderate (3-6 METs) and vigorous (>6 METs) intensity prenatal exercise have been shown to promote maternal and offspring health, while little research has been performed on low-intensity (<3 METs) exercise. Exercise sessions lasting less than 1 hr are safe for mother and fetus, while longer-duration exercise should be carefully considered and monitored. Taken together, aerobic, resistance, or a combination of exercise types is well tolerated at medium-to-high volumes and offers a variety of type-specific benefits. Still, research is needed to define (1) the "minimum" effective dose of exercise for mother and offspring health, as well as (2) the maximum tolerable dose from which more benefits may be seen. Additionally, there is a lack of randomized controlled trials addressing exercise doses during the three trimesters of pregnancy. Further, the protocols adopted in research studies should be more standardized and tested for efficacy in different populations of gravid women.

6.
Obesity (Silver Spring) ; 31(9): 2349-2358, 2023 09.
Article in English | MEDLINE | ID: mdl-37551412

ABSTRACT

OBJECTIVE: In adults, skeletal muscle insulin sensitivity (SI ) and fatty acid oxidation (FAO) are linked with a predisposition to obesity. The current study aimed to determine the effects of maternal exercise on a model of infant skeletal muscle tissue (differentiated umbilical cord mesenchymal stem cells [MSCs]) SI and FAO and analyzed for associations with infant body composition. METHODS: Females <16 weeks' gestation were randomized to either 150 min/wk of moderate-intensity aerobic, resistance, or combination exercise or a nonexercising control. At delivery, MSCs were isolated from umbilical cords and myogenically differentiated, and SI and FAO were measured using radiolabeled substrates. Infant body fat percentage (BF%) and fat-free mass were calculated using standard equations at 1 and 6 months of age. RESULTS: MSCs from infants of all exercisers had significantly (p < 0.05) higher SI . MSC SI was inversely associated with infant BF% at 1 (r = -0.38, p < 0.05) and 6 (r = -0.65, p < 0.01) months of age. Infants with high SI had lower BF% at 1 (p = 0.06) and 6 (p < 0.01) months of age. MSCs in the high SI group had higher (p < 0.05) FAO. CONCLUSIONS: Exposure to any type of exercise in utero improves offspring SI and could reduce adiposity in early infancy.


Subject(s)
Insulin Resistance , Mesenchymal Stem Cells , Female , Humans , Infant , Adiposity , Body Composition , Mesenchymal Stem Cells/metabolism , Obesity/metabolism
7.
Am J Physiol Endocrinol Metab ; 325(3): E207-E213, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37467021

ABSTRACT

Individuals with insulin resistance and obesity display higher skeletal muscle production of nonoxidized glycolytic products (i.e., lactate), and lower complete mitochondrial substrate oxidation to CO2. These findings have also been observed in individuals without obesity and are associated with an increased risk for metabolic disease. The purpose of this study was to determine if substrate preference is evident at the earliest stage of life (birth) and to provide a clinical blood marker (lactate) that could be indicative of a predisposition for metabolic disease later. We used radiolabeled tracers to assess substrate oxidation and insulin sensitivity of myogenically differentiated mesenchymal stem cells (MSCs), a proxy of infant skeletal muscle tissue, derived from umbilical cords of full-term infants. We found that greater production of nonoxidized glycolytic products (lactate, pyruvate, alanine) is directly proportional to lower substrate oxidation and insulin sensitivity in MSCs. In addition, we found an inverse relationship between the ratio of complete glucose oxidation to CO2 and infant blood lactate at 1 mo of age. Collectively, considering that higher lactate was associated with lower MSC glucose oxidation and has been shown to be implicated with metabolic disease, it may be an early indicator of infant skeletal muscle phenotype.NEW & NOTEWORTHY In infant myogenically differentiated mesenchymal stem cells, greater production of nonoxidized glycolytic products was directly proportional to lower substrate oxidation and insulin resistance. Glucose oxidation was inversely correlated with infant blood lactate. This suggests that innate differences in infant substrate oxidation exist at birth and could be associated with the development of metabolic disease later in life. Clinical assessment of infant blood lactate could be used as an early indicator of skeletal muscle phenotype.


Subject(s)
Insulin Resistance , Mesenchymal Stem Cells , Humans , Carbon Dioxide , Glycolysis/physiology , Glucose/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism , Lactic Acid/metabolism , Pyruvic Acid/metabolism , Mesenchymal Stem Cells/metabolism , Insulin/metabolism
8.
J Appl Physiol (1985) ; 134(5): 1312-1320, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37055039

ABSTRACT

Type 2 diabetes is more prevalent in African American (AA) than Caucasian (C) adults. Furthermore, differential substrate utilization has been observed between AA and C adults, but data regarding metabolic differences between races at birth remains scarce. The purpose of the present study was to determine if there are racial differences in substrate metabolism evident at birth using a mesenchymal stem cells (MSCs) collected from offspring umbilical cords. Using radio-labeled tracers, MSCs from offspring of AA and C mothers were tested for glucose and fatty acid metabolism in the undifferentiated state and while undergoing myogenesis in vitro. Undifferentiated MSCs from AA exhibited greater partitioning of glucose toward nonoxidized glucose metabolites. In the myogenic state, AA displayed higher glucose oxidation, but similar fatty acid oxidation rates. In the presence of both glucose and palmitate, but not palmitate only, AA exhibit a higher rate of incomplete fatty acid oxidation evident by a greater production of acid-soluble metabolites. Myogenic differentiation of MSCs elicits an increase in glucose oxidation in AA, but not in C. Together, these data suggest that metabolic differences between AA and C races exist at birth.NEW & NOTEWORTHY African Americans, when compared with Caucasians, display greater insulin resistance in skeletal muscle. Differences in substrate utilization have been proposed as a factor for this health disparity; however, it remains unknown how early these differences manifest. Using infant umbilical cord-derived mesenchymal stem cells, we tested for in vitro glucose and fatty acid oxidation differences. Myogenically differentiated MSCs from African American offspring display higher rates of glucose oxidation and incomplete fatty acid oxidation.


Subject(s)
Diabetes Mellitus, Type 2 , Mesenchymal Stem Cells , Adult , Humans , Infant , Infant, Newborn , Black or African American , Diabetes Mellitus, Type 2/metabolism , Fatty Acids/metabolism , Glucose/metabolism , Insulin/metabolism , Mesenchymal Stem Cells/metabolism , White People
9.
J Clin Endocrinol Metab ; 108(7): e360-e370, 2023 06 16.
Article in English | MEDLINE | ID: mdl-36722208

ABSTRACT

CONTEXT: Maternal exercise positively influences pregnancy outcomes and metabolic health in progeny; however, data regarding the effects of different modes of prenatal exercise on offspring metabolic phenotype is lacking. OBJECTIVE: To elucidate the effects of different modes of maternal exercise on offspring umbilical cord derived mesenchymal stem cell (MSC) metabolism. DESIGN: Randomized controlled trial. SETTING: Clinical research facility. PATIENTS: Healthy females between 18 and 35 years of age and <16 weeks' gestation. INTERVENTION: Women were randomized to either 150 minutes of moderate intensity aerobic, resistance (RE), or combination exercise per week or to a non-exercising control. MAIN OUTCOME MEASURES: At delivery, MSCs were isolated from the umbilical cords. MSC glucose and fatty acid(s) metabolism was assessed using radiolabeled substrates. RESULTS: MSCs from offspring of all the exercising women demonstrated greater partitioning of oleate (P ≤ 0.05) and palmitate (P ≤ 0.05) toward complete oxidation relative to non-exercisers. MSCs from offspring of all exercising mothers also had lower rates of incomplete fatty acid oxidation (P ≤ 0.05), which was related to infant adiposity at 1 month of age. MSCs from all exercising groups exhibited higher insulin-stimulated glycogen synthesis rates (P ≤ 0.05), with RE having the largest effect (P ≤ 0.05). RE also had the greatest effect on MSC glucose oxidation rates (P ≤ 0.05) and partitioning toward complete oxidation (P ≤ 0.05). CONCLUSION: Our data demonstrates that maternal exercise enhances glucose and lipid metabolism of offspring MSCs. Improvements in MSC glucose metabolism seem to be the greatest with maternal RE. Clinical Trial: ClinicalTrials.gov Identifier: NCT03838146.


Subject(s)
Glucose , Mesenchymal Stem Cells , Pregnancy , Humans , Female , Glucose/metabolism , Lipid Metabolism , Obesity/metabolism , Fatty Acids/metabolism
10.
Biochim Biophys Acta Bioenerg ; 1863(8): 148915, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36058252

ABSTRACT

Although the development of chemoresistance is multifactorial, active chemotherapeutic efflux driven by upregulations in ATP binding cassette (ABC) transporters are commonplace. Chemotherapeutic efflux pumps, like ABCB1, couple drug efflux to ATP hydrolysis and thus potentially elevate cellular demand for ATP resynthesis. Elevations in both mitochondrial content and cellular respiration are common phenotypes accompanying many models of cancer cell chemoresistance, including those dependent on ABCB1. The present study set out to characterize potential mitochondrial remodeling commensurate with ABCB1-dependent chemoresistance, as well as investigate the impact of ABCB1 activity on mitochondrial respiratory kinetics. To do this, comprehensive bioenergetic phenotyping was performed across ABCB1-dependent chemoresistant cell models and compared to chemosensitive controls. In doxorubicin (DOX) resistant ovarian cancer cells, the combination of both increased mitochondrial content and enhanced respiratory complex I (CI) boosted intrinsic oxidative phosphorylation (OXPHOS) power output. With respect to ABCB1, acute ABCB1 inhibition partially normalized intact basal mitochondrial respiration between chemosensitive and chemoresistant cells, suggesting that active ABCB1 contributes to mitochondrial remodeling in favor of enhanced OXPHOS. Interestingly, while enhanced OXPHOS power output supported ABCB1 drug efflux when DOX was present, in the absence of chemotherapeutic stress, enhanced OXPHOS power output was associated with reduced tumorigenicity.


Subject(s)
Drug Resistance, Multiple , Ovarian Neoplasms , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Doxorubicin/metabolism , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Electron Transport Complex I/metabolism , Female , Humans , Ovarian Neoplasms/drug therapy , Oxidative Phosphorylation
11.
Biomedicines ; 10(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35740478

ABSTRACT

African Americans (AA) are disproportionately burdened by metabolic diseases. While largely unexplored between Caucasian (C) and AA, differences in mitochondrial bioenergetics may provide crucial insight to mechanisms for increased susceptibility to metabolic diseases. AA display lower total energy expenditure and resting metabolic rate compared to C, but paradoxically have a higher amount of skeletal muscle mass, suggestive of inherent energetic efficiency differences between these races. Such adaptations would increase the chances of overnutrition in AA; however, these disparities would not explain the racial difference in insulin resistance (IR) in healthy subjects. Hallmarks associated with insulin resistance (IR), such as reduced mitochondrial oxidative capacity and metabolic inflexibility are present even in healthy AA without a metabolic disease. These adaptations might be influential of mitochondrial "substrate preference" and could play a role in disproportionate IR rates among races. A higher glycolytic flux and provision of shuttles transferring electrons from cytosol to mitochondrial matrix could be a contributing factor in development of IR via heightened reactive oxygen species (ROS) production. This review highlights the above concepts and provides suggestions for future studies that could help delineate molecular premises behind potential impairments in insulin signaling and metabolic disease susceptibility in AA.

12.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: mdl-35021222

ABSTRACT

Next-generation sequencing has resulted in an explosion of available data, much of which remains unstudied in terms of biochemical function; yet, experimental characterization of these sequences has the potential to provide unprecedented insight into the evolution of enzyme activity. One way to make inroads into the experimental study of the voluminous data available is to engage students by integrating teaching and research in a college classroom such that eventually hundreds or thousands of enzymes may be characterized. In this study, we capitalize on this potential to focus on SABATH methyltransferase enzymes that have been shown to methylate the important plant hormone, salicylic acid (SA), to form methyl salicylate. We analyze data from 76 enzymes of flowering plant species in 23 orders and 41 families to investigate how widely conserved substrate preference is for SA methyltransferase orthologs. We find a high degree of conservation of substrate preference for SA over the structurally similar metabolite, benzoic acid, with recent switches that appear to be associated with gene duplication and at least three cases of functional compensation by paralogous enzymes. The presence of Met in active site position 150 is a useful predictor of SA methylation preference in SABATH methyltransferases but enzymes with other residues in the homologous position show the same substrate preference. Although our dense and systematic sampling of SABATH enzymes across angiosperms has revealed novel insights, this is merely the "tip of the iceberg" since thousands of sequences remain uncharacterized in this enzyme family alone.


Subject(s)
Magnoliopsida , Methyltransferases , Plant Proteins , Magnoliopsida/classification , Magnoliopsida/enzymology , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Salicylic Acid/metabolism , Substrate Specificity
13.
Diabetes Metab Syndr Obes ; 14: 4043-4057, 2021.
Article in English | MEDLINE | ID: mdl-34557007

ABSTRACT

Excess nutrient intake and lack of exercise characterize the problem of obesity and are common factors in insulin resistance (IR). With an increasing number of prediabetic, and type 2 diabetic populations, metformin is still the most prescribed glucose-lowering drug and is often accompanied by recommendations for regular physical exercise. Metformin, by the inhibition of complex 1 of the electron transport chain, and exercise, by increasing energy expenditure, both elicit a low cellular energy state that leads to improvements in glucose control via activation of adenosine 5' monophosphate-activated protein kinase (AMPK). An augmented stimulation of the energy-sensing enzyme AMPK by either of the two modalities leads to an increase in glycogenolysis, glucose uptake, fat oxidation, a decrease in glycogen and protein synthesis, and gluconeogenesis in muscle and the liver, which are remarked as having positive effects on metabolic pathophysiology observed in IR and type 2 diabetes mellitus (T2DM). While both modalities exploit the energy-sensing enzyme AMPK to attain glucose homeostasis, the synergistic effect of these two treatments is not distinctly supported by the literature. Further, an antagonistic dynamic has been observed in cases where metformin and exercise were combined. Reduction of insulin-sensitizing effects of exercise and an overall hindrance of exercise performance and adaptations have been reported and could suggest the possible incongruity of these two modalities. The aim of this review is to elucidate the effect that metformin and exercise have on the management of the metabolic abnormalities observed in T2DM and to provide an insight into the interaction of these two modalities.

SELECTION OF CITATIONS
SEARCH DETAIL
...