Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3742, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714652

ABSTRACT

Coal power phase-out is critical for climate mitigation, yet it harms workers, companies, and coal-dependent regions. We find that more than half of countries that pledge coal phase-out have  "just transition" policies which compensate these actors. Compensation is larger in countries with more ambitious coal phase-out pledges and most commonly directed to national and regional governments or companies, with a small share going directly to workers. Globally, compensation amounts to over $200 billion (uncertainty 163-258), about half of which is funded through  international schemes, mostly through Just Energy Transition Partnerships and the European Union Just Transition Fund. If similar transfers are extended to China and India to phase out coal in line with the Paris temperature targets, compensation flows could become larger than current international climate financing. Our findings highlight that the socio-political acceptance of coal phase-out has a tangible economic component which should be factored into assessing the feasibility of achieving climate targets.

2.
Nat Commun ; 13(1): 3157, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672306

ABSTRACT

Biofuels are currently the only available bulk renewable fuel. They have, however, limited expansion potential due to high land requirements and associated risks for biodiversity, food security, and land conflicts. We therefore propose to increase output from ethanol refineries in a land-neutral methanol pathway: surplus CO2-streams from fermentation are combined with H2 from renewably powered electrolysis to synthesize methanol. We illustrate this pathway with the Brazilian sugarcane ethanol industry using a spatio-temporal model. The fuel output of existing ethanol generation facilities can be increased by 43%-49% or ~100 TWh without using additional land. This amount is sufficient to cover projected growth in Brazilian biofuel demand in 2030. We identify a trade-off between renewable energy generation technologies: wind power requires the least amount of land whereas a mix of wind and solar costs the least. In the cheapest scenario, green methanol is competitive to fossil methanol at an average carbon price of 95€ tCO2-1.


Subject(s)
Methanol , Saccharum , Biofuels , Brazil , Ethanol
4.
Energy Res Soc Sci ; 68: 101685, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32839704

ABSTRACT

In this perspectives piece, an interdisciplinary team of social science researchers considers the implications of Covid-19 for the politics of sustainable energy transitions. The emergency measures adopted by states, firms, and individuals in response to this global health crisis have driven a series of political, economic and social changes with potential to influence sustainable energy transitions. We identify some of the initial impacts of the 'great lockdown' on sustainable and fossil sources of energy, and consider how economic stimulus packages and social practices in the wake of the pandemic are likely to shape energy demand, the carbon-intensity of the energy system, and the speed of transitions. Adopting a broad multi-scalar and multi-actor approach to the analysis of energy system change, we highlight continuities and discontinuities with pre-pandemic trends. Discussion focuses on four key themes that shape the politics of sustainable energy transitions: (i) the short, medium and long-term temporalities of energy system change; (ii) practices of investment around clean-tech and divestment from fossil fuels; (iii) structures and scales of energy governance; and (iv) social practices around mobility, work and public health. While the effects of the pandemic continue to unfold, some of its sectoral and geographically differentiated impacts are already emerging. We conclude that the politics of sustainable energy transitions are now at a critical juncture, in which the form and direction of state support for post-pandemic economic recovery will be key.

7.
Radiat Res ; 190(6): 565-575, 2018 12.
Article in English | MEDLINE | ID: mdl-30407900

ABSTRACT

On future missions into deep space, astronauts will be required to work more autonomously than on previous missions, and thus their ability to perform executive functions could be critical to mission success. In this study, we determined the effect that ≤15 cGy of 600 MeV/n 56Fe particles has on attentional set-shifting (ATSET) performance of ∼10 month-old (at the time of irradiation) male Wistar rats that had been prescreened for their ability to perform the task. Exposure to 1-15 cGy of 56Fe particles leads to a significant impairment in compound discrimination (CD) performance. Should similar effects occur in astronauts, an impaired ability to execute CD would result in a decreased ability to identify and maintain focus on relevant aspects of the task being performed. The use of rats that had been prescreened for ATSET performance helped to establish that working memory of the rules for the food reward remained intact (for at least 100 days) even after 15 cGy irradiation with 600 MeV/n 56Fe particles, but that 56Fe radiation exposure affected associative cue learning/acquisition rather than an intrinsic inability to perform the CD tasks. Our data suggest that declarative memory, and the ability to transitively infer established rules, also remained intact in the irradiated rats. Thus, should similar effects occur in astronauts, 56Fe-induced CD performance deficits may only be manifested in scenarios where astronauts are required to transitively apply their knowledge to solve problems that they have not previously encountered; nevertheless, potentially one-third of astronauts may not be able to perform event-critical tasks correctly. The implication of this data, from a probabilistic risk assessment perspective, is that cognitive performance studies that use naïve rodents, thus requiring task rule acquisition as well as task performance, are likely to overestimate the risk of 56Fe-induced cognitive deficits.


Subject(s)
Attention/radiation effects , Iron , Memory/radiation effects , Radiation Exposure , Animals , Astronauts , Cosmic Radiation , Executive Function/radiation effects , Humans , Male , Physical Conditioning, Animal , Rats, Wistar , Reward
8.
Nature ; 554(7691): 229-233, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29420477

ABSTRACT

Hopes are high that removing fossil fuel subsidies could help to mitigate climate change by discouraging inefficient energy consumption and levelling the playing field for renewable energy. In September 2016, the G20 countries re-affirmed their 2009 commitment (at the G20 Leaders' Summit) to phase out fossil fuel subsidies and many national governments are using today's low oil prices as an opportunity to do so. In practical terms, this means abandoning policies that decrease the price of fossil fuels and electricity generated from fossil fuels to below normal market prices. However, whether the removal of subsidies, even if implemented worldwide, would have a large impact on climate change mitigation has not been systematically explored. Here we show that removing fossil fuel subsidies would have an unexpectedly small impact on global energy demand and carbon dioxide emissions and would not increase renewable energy use by 2030. Subsidy removal would reduce the carbon price necessary to stabilize greenhouse gas concentration at 550 parts per million by only 2-12 per cent under low oil prices. Removing subsidies in most regions would deliver smaller emission reductions than the Paris Agreement (2015) climate pledges and in some regions global subsidy removal may actually lead to an increase in emissions, owing to either coal replacing subsidized oil and natural gas or natural-gas use shifting from subsidizing, energy-exporting regions to non-subsidizing, importing regions. Our results show that subsidy removal would result in the largest CO2 emission reductions in high-income oil- and gas-exporting regions, where the reductions would exceed the climate pledges of these regions and where subsidy removal would affect fewer people living below the poverty line than in lower-income regions.


Subject(s)
Commerce/economics , Commerce/statistics & numerical data , Financing, Government/economics , Financing, Government/trends , Fossil Fuels/economics , Fossil Fuels/statistics & numerical data , Global Warming/prevention & control , Carbon Dioxide/analysis , Electricity , Financing, Government/legislation & jurisprudence , Global Warming/legislation & jurisprudence , Income/statistics & numerical data , International Cooperation , Poverty/economics , Poverty/statistics & numerical data
9.
Radiat Res ; 189(3): 273-282, 2018 03.
Article in English | MEDLINE | ID: mdl-29309264

ABSTRACT

Astronauts on deep space missions will be required to work more autonomously than on previous missions, and thus their ability to perform executive functions could be critical to mission success. One of the most common measures of executive function in humans is the ability to perform attentional set shifting, which requires contributions from working memory, discrimination, reversal learning, attentional set shifting and attention. Rodent attentional set shifting assays require rats to form an association between the presence of the food reward and an associative cue, which is either the digging media or the scent that is placed in the bowl; by altering the combination of scent and digging media, progressively more complex cognitive processes can be tested. In this study, we have determined the effect that exposure to 5-20 cGy of 600 MeV/n 28Si particles has on the ability of male retired breeder Wistar rats to perform attentional set shifting at three months postirradiation. All doses of Si resulted in a significant impairment in the ability of the rats to perform the first and most simple step of the ATSET assay, the simple discrimination (SD) task. If astronauts were to experience HZE-induced SD impairments, they would be unable to identify key factors to successfully resolve a situation. Performance in at least one other component of the ATSET test was impaired at all doses studied, however, these varied according to the dose. Compared with our previous studies using 1 GeV/n 56Fe and 48Ti particles, 600 MeV/n 28Si ions impaired attentional set-shifting performance at lower doses than the heavier ions. However, when the effect of isofluences of the three HZE ions were compared, there were no significant differences in the severity of the impaired performance; there were, however, ion-specific decrements in the ability of rats to perform within the various stages of the test. This study further supports the notion that "mission-relevant" doses of HZE particles (<20 cGy) can impair certain aspects of attentional set-shifting performance in retired breeder rats, but there may be some ion-specific changes in the specific cognitive domains impaired.


Subject(s)
Attention/radiation effects , Silicon/adverse effects , Animals , Cosmic Radiation/adverse effects , Dose-Response Relationship, Radiation , Linear Energy Transfer , Male , Rats , Rats, Wistar
10.
Radiat Res ; 189(2): 136-145, 2018 02.
Article in English | MEDLINE | ID: mdl-29206597

ABSTRACT

NASA is planning future missions to Mars, which will result in astronauts being exposed to ∼13 cGy/year of galactic cosmic radiation (GCR). Previous ground-based experiments have demonstrated that low (15 cGy) doses of 1 GeV/n 56Fe ions impair hippocampus-dependent spatial memory in rats. However, some irradiated rats maintain a spatial memory performance comparable to that seen in the sham-irradiated rats, suggesting that some of these animals are able to ameliorate the deleterious effects of the GCR, while others are not. This rat model provides a unique opportunity to increase our understanding of how GCR affects neurophysiology, what adaptive responses can be invoked to prevent the emergence of GCR-induced spatial memory impairment, as well as the pathways that are altered when spatial memory impairment occurs. A label-free, unbiased proteomic profiling approach involving quantitative protein/peptide profiling followed by Cytoscape analysis has established the composition of the hippocampal proteome in male Wistar rats after exposure to 15 cGy of 1 GeV/n 56Fe, and identified proteins whose expression is altered with respect to: 1. radiation exposure and 2. impaired spatial memory performance. We identified 30 proteins that were classified as "GCR exposure marker" (GEM) proteins (expressed solely or at higher levels in the irradiated rats but not related to spatial memory performance), most notably CD98, Cadps and GMFB. Conversely, there were 252 proteins that were detected only in the sham-irradiated samples, i.e., they were not detected in either of the irradiated cohorts; of these 10% have well-documented roles in neurotransmission. The second aspect of our data mining was to identify proteins whose expression was associated with either impaired or functional spatial memory. While there are multiple changes in the hippocampal proteome in the irradiated rats that have impaired spatial memory performance, with 203 proteins being detected (or upregulated) only in these rats, it would appear that spatial memory impairment may also arise from an inability of these rats to express "good spatial memory" (GSM) proteins, many of which play an important role in neuronal homeostasis and function, axonogenesis, presynaptic membrane organization and G-protein coupled receptor (GCPR) signaling. It may be possible to use this knowledge to develop two alternative countermeasure strategies, one that preserves critical pathways prophylactically and one that invokes restorative pathways after GCR exposure.


Subject(s)
Cosmic Radiation/adverse effects , Hippocampus/physiology , Hippocampus/radiation effects , Proteomics , Spatial Memory/radiation effects , Animals , Male , Rats , Rats, Wistar
11.
Radiat Res ; 187(3): 287-297, 2017 03.
Article in English | MEDLINE | ID: mdl-28156212

ABSTRACT

Exposure to low (∼20 cGy) doses of high-energy charged (HZE) particles, such as 1 GeV/n 56Fe, results in impaired hippocampal-dependent learning and memory (e.g., novel object recognition and spatial memory) in rodents. While these findings raise the possibility that astronauts on deep-space missions may develop cognitive deficits, not all rats develop HZE-induced cognitive impairments, even after exposure to high (200 cGy) HZE doses. The reasons for this differential sensitivity in some animals that develop HZE-induced cognitive failure remain speculative. We employed a robust quantitative mass spectrometry-based workflow, which links early-stage discovery to next-stage quantitative verification, to identify differentially active proteins/pathways in rats that developed spatial memory impairment at three months after exposure to 20 cGy of 1 GeV/n 56Fe (20/impaired), and in those rats that managed to maintain normal cognitive performance (20/functional). Quantitative data were obtained on 665-828 hippocampal proteins in the various cohorts of rats studied, of which 580 were expressed in all groups. A total of 107 proteins were upregulated in the irradiated rats irrespective of their spatial memory performance status, which included proteins involved in oxidative damage response, calcium transport and signaling. Thirty percent (37/107) of these "radiation biomarkers" formed a functional interactome of the proteasome and the COP9 signalosome. These data suggest that there is persistent oxidative stress, ongoing autophagy and altered synaptic plasticity in the irradiated hippocampus, irrespective of the spatial memory performance status, suggesting that the ultimate phenotype may be determined by how well the hippocampal neurons compensate to the ongoing oxidative stress and associated side effects. There were 67 proteins with expression that correlated with impaired spatial memory performance. Several of the "impaired biomarkers" have been implicated in poor spatial memory performance, neurodegeneration, neuronal loss or neuronal susceptibility to apoptosis, or neuronal synaptic or structural plasticity. Therefore, in addition to the baseline oxidative stress and altered adenosine metabolism observed in all irradiated rats, the 20/impaired rats expressed proteins that led to poor spatial memory performance, enhanced neuronal loss and apoptosis, changes in synaptic plasticity and dendritic remodeling. A total of 46 proteins, which were differentially upregulated in the sham-irradiated and 20/functional rat cohorts, can thus be considered as markers of good spatial memory, while another 95 proteins are associated with the maintenance of good spatial memory in the 20/functional rats. The loss or downregulation of these "good spatial memory" proteins would most likely exacerbate the situation in the 20/impaired rats, having a major impact on their neurocognitive status, given that many of those proteins play an important role in neuronal homeostasis and function. Our large-scale comprehensive proteomic analysis has provided some insight into the processes that are altered after exposure, and the collective data suggests that there are multiple problems with the functionality of the neurons and astrocytes in the irradiated hippocampi, which appear to be further exacerbated in the rats that have impaired spatial memory performance or partially compensated for in the rats with good spatial memory.


Subject(s)
Hippocampus/physiopathology , Hippocampus/radiation effects , Iron/adverse effects , Proteome/metabolism , Spatial Memory/radiation effects , Animals , Dose-Response Relationship, Radiation , Hippocampus/metabolism , Male , Rats , Rats, Wistar
12.
Radiat Res ; 187(1): 60-65, 2017 01.
Article in English | MEDLINE | ID: mdl-28085638

ABSTRACT

Prolonged deep space missions to planets and asteroids will expose astronauts to galactic cosmic radiation (GCR), a mixture of low-LET ionizing radiations, high-energy protons and high-Z and energy (HZE) particles. Ground-based experiments are used to determine whether this radiation environment will have an effect on the long-term health of astronauts and their ability to complete various tasks during their mission. Emerging data suggest that mission-relevant HZE doses impair several hippocampus-dependent neurocognitive processes in rodents, but that there is substantial interindividual variation in the severity of neurocognitive impairment, ranging from no observable effects to severe impairment. While the majority of studies have established the effect that the most abundant HZE species (56Fe) has on neurocognition, some studies suggest that the lighter 48Ti HZE particles may be equally, if not more, potent at impairing neurocognition. In this study, we assessed the effect that exposure to 5-20 cGy 1 GeV/n 48Ti had on the spatial memory performance of socially mature male Wistar rats. Acute exposures to mission-relevant doses (≤5 cGy) of 1 GeV/n 48Ti significantly (P < 0.05) reduced the mean spatial memory performance of the rats at three months after exposure, and significantly (P < 0.015) increased the percentage of rats that have severe (Z score ≥ 2) impairment, i.e., poor performers. Collectively, these data further support the notion that the LET dependency of neurocognitive impairment may differ from that of cell killing.


Subject(s)
Social Behavior , Spatial Memory/radiation effects , Titanium/adverse effects , Animals , Dose-Response Relationship, Radiation , Iron/adverse effects , Male , Maze Learning/radiation effects , Rats , Rats, Wistar
13.
ACS Infect Dis ; 2(10): 667-673, 2016 10 14.
Article in English | MEDLINE | ID: mdl-27737552

ABSTRACT

Enterohemorrhagic Escherichia coli O157:H7 presents a serious threat to human health and sanitation and is a leading cause in many food- and waterborne ailments. While conventional bacterial detection methods such as PCR, fluorescent immunoassays and ELISA exhibit high sensitivity and specificity, they are relatively laborious and require sophisticated instruments. In addition, these methods often demand extensive sample preparation and have lengthy readout times. We propose a simpler and more sensitive diagnostic technique featuring multiparametric magneto-fluorescent nanosensors (MFnS). Through a combination of magnetic relaxation and fluorescence measurements, our nanosensors are able to detect bacterial contamination with concentrations as little as 1 colony-forming unit (CFU). The magnetic relaxation property of our MFnS allow for sensitive screening at low target CFU, which is complemented by fluorescence measurements of higher CFU samples. Together, these qualities allow for the detection and quantification of broad-spectrum contaminations in samples ranging from aquatic reservoirs to commercially produced food.


Subject(s)
Escherichia coli O157/isolation & purification , Magnetite Nanoparticles/chemistry , Nanotechnology/methods , Animals , Cattle , Colony Count, Microbial , Escherichia coli O157/growth & development , Fluorescence , Lakes/microbiology , Milk/microbiology , Nanotechnology/instrumentation , Sensitivity and Specificity
14.
Life Sci Space Res (Amst) ; 10: 17-22, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27662783

ABSTRACT

NASA is currently conducting ground based experiments to determine whether the radiation environment that astronauts will encounter on deep space missions will have an impact on their long-term health and their ability to complete the various tasks during the mission. Emerging data suggest that exposure of rodents to mission-relevant HZE radiation doses does result in the impairment of various neurocognitive processes. An essential part of mission planning is a probabilistic risk assessment process that takes into account the likely incidence and severity of a problem. To date few studies have reported the impact of space radiation in a format that is amenable to PRA, and those that have only reported data for a single cognitive process. This study has established the ability of individual male Wistar rats to conduct a hippocampus-dependent (spatial memory) task and a cortex-dependent (attentional set shifting task) 90 days after exposure to 20cGy 1GeV/n (56)Fe particles. Radiation-induced impairment of performance in one cognitive domain was not consistently associated with impaired performance in the other domain. Thus sole reliance upon a single measure of cognitive performance may substantially under-estimate the risk of cognitive impairment, and ultimately it may be necessary to establish the likelihood that mission-relevant HZE doses will impair performance in the three or four cognitive domains that NASA considers to be most critical for mission success, and build a PRA using the composite data from such studies.


Subject(s)
Behavior, Animal/radiation effects , Cognition/radiation effects , Cosmic Radiation , Hippocampus/physiopathology , Prefrontal Cortex/physiopathology , Animals , Dose-Response Relationship, Radiation , Hippocampus/radiation effects , Male , Prefrontal Cortex/radiation effects , Rats , Rats, Wistar
15.
Nature ; 533(7601): 36, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27147023
16.
Radiat Res ; 185(3): 332-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26943453

ABSTRACT

Prolonged deep space missions to planets and asteroids will expose astronauts to galactic cosmic radiation, comprised of low-linear energy transfer (LET) ionizing radiations, high-energy protons and high-Z and energy (HZE) particles, such as (56)Fe nuclei. In prior studies with rodents exposed to HZE particle radiation at doses likely to be encountered during deep space missions (<20 cGy) investigators reported impaired hippocampal-dependent neurocognitive performance and further observed substantial variation among the irradiated animals in neurocognitive impairment, ranging from no observable effects to severe impairment. These findings point to the importance of incorporating quantitative measures of interindividual variations into next generation risk assessment models of radiation risks on neurocognition. In this study, 269 male proven breeder Wistar rats were exposed to 1 GeV/n (56)Fe at doses of 0, 5, 10, 15 and 20 cGy, and tested for spatial memory performance on the Barnes maze at three months after exposure. The radiation response data were compared using changes in mean cohort performance and by the proportion of poor responders using the performance benchmark of two standard deviations below the mean value among the sham-irradiated cohort. Acute exposures to mission-relevant doses of 1 GeV/n (56)Fe reduced the mean spatial memory performance at three months after exposure (P < 0.002) and increased the proportions of poor performers, 2- to 3-fold. However, a substantial fraction of animals in all exposure cohorts showed no detectable change in performance, compared to the distribution of sham-irradiated animals. Our findings suggest that individualized metrics of susceptibility or resistance to radiation-induce changes in neurocognitive performance will be advantageous to the development of probabilistic risk assessment models for HZE-induced neurocognitive impairment.


Subject(s)
Cosmic Radiation , Hippocampus/radiation effects , Memory Disorders/pathology , Spatial Memory/radiation effects , Animals , Dose-Response Relationship, Radiation , Hippocampus/pathology , Humans , Linear Energy Transfer , Male , Rats , Rats, Wistar
17.
Radiat Res ; 185(1): 13-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26720801

ABSTRACT

Astronauts on deep space missions will be required to work more autonomously than on previous missions, and thus their ability to perform executive functions could be critical to mission success. In this study we have determined the impact that exposure to 10, 15 and 20 cGy of 1 GeV/n (48)Ti particles has on the long-term (three-months post exposure) ability of male retired breeder Wistar rats to perform attentional set shifting. The ability of the rats to conduct compound discrimination reversal (CDR) was significantly impaired at all doses studied, with compound discrimination (CD) being impaired at 10 and 15 cGy. Impaired CD performance would result in a decreased ability to identify and focus on relevant aspects of a task being conducted, while the functional consequence of an impaired CDR performance would be a reduction in the individual's ability to recognize when that factor changes from a positive to a negative factor for the successful completion of a task. In contrast to our previous study with 1 GeV/n (56)Fe particles, there were no significant impairments in the ability of the (48)Ti-irradiated rats to conduct simple discrimination. This study further supports the notion that "mission-relevant" doses of HZE particles (<20 cGy) can impair certain aspects of attentional set-shifting performance in retired breeder rats, but there may be some ion-specific changes in the specific cognitive domains impaired.


Subject(s)
Attention/physiology , Behavior, Animal/physiology , Cosmic Radiation , Executive Function/physiology , Space Flight , Titanium , Animals , Attention/radiation effects , Behavior, Animal/radiation effects , Breeding , Dose-Response Relationship, Radiation , Executive Function/radiation effects , Heavy Ions , Male , Radiation Dosage , Radiation Exposure , Rats , Rats, Wistar
18.
Radiat Res ; 182(3): 292-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25029107

ABSTRACT

Previous ground-based experiments have shown that cranial irradiation with mission relevant (20 cGy) doses of 1 GeV/nucleon (56)Fe particles leads to a significant impairment in Attentional Set Shifting (ATSET) performance, a measure of executive function, in juvenile Wistar rats. However, the use of head only radiation exposure and the biological age of the rats used in that study may not be pertinent to determine the likelihood that ATSET will be impaired in Astronauts on deep space flights. In this study we have determined the impact that whole-body exposure to 10, 15 and 20 cGy of 1 GeV/nucleon (56)Fe particles had on the ability (at three months post exposure) of socially mature (retired breeder) Wistar rats to conduct the attentional set-shifting paradigm. The current study has established that whole-body exposures to 15 and 20 (but not 10) cGy of 1 GeV/nucleon (56)Fe particles results in the impairment of ATSET in both juvenile and socially mature rats. However, the exact nature of the impaired ATSET performance varied depending upon the age of the rats, whether whole-body versus cranial irradiation was used and the dose of 1 GeV/u (56)Fe received. Exposure of juvenile rats to 20 cGy of 1 GeV/nucleon (56)Fe particles led to a decreased ability to perform intra-dimensional shifting (IDS) irrespective of whether the rats received head only or whole-body exposures. Juvenile rats that received whole-body exposure also had a reduced ability to habituate to the assay and to complete intra-dimensional shifting reversal (IDR), whereas juvenile rats that received head only exposure had a reduced ability to complete compound discrimination reversal (CDR). Socially mature rats that received whole-body exposures to 10 cGy of 1 GeV/nucleon (56)Fe particles exhibited no obvious decline in set-shifting performance; however those exposed to 15 and 20 cGy had a reduced ability to perform simple discrimination (SD) and compound discrimination (CD). Exposure to 20 cGy of 1 GeV/nucleon (56)Fe particles also led to a decreased performance in IDR and to ∼25% of rats failing to habituate to the task. Most of these rats started to dig for the food reward but rapidly (within 15 s) gave up digging, suggesting that they had developed appropriate procedural memories about food retrieval, but had an inability to maintain attention on the task. Our preliminary data suggests that whole-body exposure to 20 cGy of 1 GeV/nucleon (56)Fe particles reduced the cholinergic (but not the GABAergic) readily releasable pool (RRP) in nerve terminals of the basal forebrain from socially-mature rats. This perturbation of the cholinergic RRP could directly lead to the loss of CDR and IDR performance, and indirectly [through the metabolic changes in the medial prefrontal cortex (mPFC)] to the loss of SD and CD performance. These findings provide the first evidence that attentional set-shifting performance in socially mature rats is impaired after whole-body exposure to mission relevant doses (15 and 20 cGy) of 1 GeV/nucleon (56)Fe particles, and importantly that a dose reduction down to 10 cGy prevents that impairment. The ability to conduct Discrimination tasks (SD and CD) and reversal learning (CDR) is reduced after exposure to 15 and 20 cGy of 1 GeV/nucleon (56)Fe particles, but at 20 cGy there is an additional decrement, ∼ 25% of rats are unable to maintain attention to task. These behavioral decrements are associated with a reduction in the cholinergic RRP within basal forebrain, which has been shown to play a major role in regulating the activity of the PFC.


Subject(s)
Attention/radiation effects , Cosmic Radiation , Executive Function/radiation effects , Animals , Dose-Response Relationship, Radiation , Male , Prosencephalon/radiation effects , Rats , Rats, Wistar , Synaptosomes/radiation effects , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL
...