Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(D1): D213-D221, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953365

ABSTRACT

Quantification of RNA splicing variations based on RNA-Sequencing can reveal tissue- and disease-specific splicing patterns. To study such splicing variations, we introduce MAJIQlopedia, an encyclopedia of splicing variations that encompasses 86 human tissues and 41 cancer datasets. MAJIQlopedia reports annotated and unannotated splicing events for a total of 486 175 alternative splice junctions in normal tissues and 338 317 alternative splice junctions in cancer. This database, available at https://majiq.biociphers.org/majiqlopedia/, includes a user-friendly interface that provides graphical representations of junction usage quantification for each junction across all tissue or cancer types. To demonstrate case usage of MAJIQlopedia, we review splicing variations in genes WT1, MAPT and BIN1, which all have known tissue or cancer-specific splicing variations. We also use MAJIQlopedia to highlight novel splicing variations in FDX1 and MEGF9 in normal tissues, and we uncover a novel exon inclusion event in RPS6KA6 that only occurs in two cancer types. Users can download the database, request the addition of data to the webtool, or install a MAJIQlopedia server to integrate proprietary data. MAJIQlopedia can serve as a reference database for researchers seeking to understand what splicing variations exist in genes of interest, and those looking to understand tissue- or cancer-specific splice isoform usage.


Subject(s)
Alternative Splicing , Neoplasms , RNA Splicing , Humans , Alternative Splicing/genetics , Neoplasms/genetics , Protein Isoforms/genetics , RNA Splice Sites , RNA Splicing/genetics , Sequence Analysis, RNA
2.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045232

ABSTRACT

Mapping transcriptomic variations using either short or long reads RNA sequencing is a staple of genomic research. Long reads are able to capture entire isoforms and overcome repetitive regions, while short reads still provides improved coverage and error rates. Yet how to quantitatively compare the technologies, can we combine those, and what may be the benefit of such a combined view remain open questions. We tackle these questions by first creating a pipeline to assess matched long and short reads data using a variety of transcriptome statistics. We find that across datasets, algorithms and technologies, matched short reads data detects roughly 50% more splice junctions, with 10-30% of the splice junctions included at 20% or more are missed by long reads. In contrast, long reads detect many more intron retention events, pointing to the benefit of combining the technologies. We introduce MAJIQ-L, an extension of the MAJIQ software to enable a unified view of transcriptome variations from both technologies and demonstrate its benefits. Our software can be used to assess any future long reads technology or algorithm, and combine it with short reads data for improved transcriptome analysis.

3.
Nat Commun ; 14(1): 1230, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36869033

ABSTRACT

The ubiquity of RNA-seq has led to many methods that use RNA-seq data to analyze variations in RNA splicing. However, available methods are not well suited for handling heterogeneous and large datasets. Such datasets scale to thousands of samples across dozens of experimental conditions, exhibit increased variability compared to biological replicates, and involve thousands of unannotated splice variants resulting in increased transcriptome complexity. We describe here a suite of algorithms and tools implemented in the MAJIQ v2 package to address challenges in detection, quantification, and visualization of splicing variations from such datasets. Using both large scale synthetic data and GTEx v8 as benchmark datasets, we assess the advantages of MAJIQ v2 compared to existing methods. We then apply MAJIQ v2 package to analyze differential splicing across 2,335 samples from 13 brain subregions, demonstrating its ability to offer insights into brain subregion-specific splicing regulation.


Subject(s)
Algorithms , RNA Splicing , RNA-Seq , Benchmarking , Brain
4.
Nat Commun ; 14(1): 63, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599821

ABSTRACT

Identification of cancer sub-types is a pivotal step for developing personalized treatment. Specifically, sub-typing based on changes in RNA splicing has been motivated by several recent studies. We thus develop CHESSBOARD, an unsupervised algorithm tailored for RNA splicing data that captures "tiles" in the data, defined by a subset of unique splicing changes in a subset of patients. CHESSBOARD allows for a flexible number of tiles, accounts for uncertainty of splicing quantification, and is able to model missing values as additional signals. We first apply CHESSBOARD to synthetic data to assess its domain specific modeling advantages, followed by analysis of several leukemia datasets. We show detected tiles are reproducible in independent studies, investigate their possible regulatory drivers and probe their relation to known AML mutations. Finally, we demonstrate the potential clinical utility of CHESSBOARD by supplementing mutation based diagnostic assays with discovered splicing profiles to improve drug response correlation.


Subject(s)
Neoplasms , RNA Splicing , Humans , Bayes Theorem , RNA Splicing/genetics , Neoplasms/diagnosis , Neoplasms/genetics , RNA Splicing Factors/genetics , Mutation , Alternative Splicing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...