Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurocrit Care ; 32(1): 317-322, 2020 02.
Article in English | MEDLINE | ID: mdl-31388871

ABSTRACT

Spreading depolarizations (SDs) are profound disruptions of cellular homeostasis that slowly propagate through gray matter and present an extraordinary metabolic challenge to brain tissue. Recent work has shown that SDs occur commonly in human patients in the neurointensive care setting and have established a compelling case for their importance in the pathophysiology of acute brain injury. The International Conference on Spreading Depolarizations (iCSD) held in Boca Raton, Florida, in September of 2018 included a discussion session focused on the question of "Which SDs are deleterious to brain tissue?" iCSD is attended by investigators studying various animal species including invertebrates, in vivo and in vitro preparations, diseases of acute brain injury and migraine, computational modeling, and clinical brain injury, among other topics. The discussion included general agreement on many key issues, but also revealed divergent views on some topics that are relevant to the design of clinical interventions targeting SDs. A draft summary of viewpoints offered was then written by a multidisciplinary writing group of iCSD members, based on a transcript of the session. Feedback of all discussants was then formally collated, reviewed and incorporated into the final document. It is hoped that this report will stimulate collection of data that are needed to develop a more nuanced understanding of SD in different pathophysiological states, as the field continues to move toward effective clinical interventions.


Subject(s)
Brain Injuries/physiopathology , Brain/physiopathology , Cortical Spreading Depression/physiology , Animals , Electroencephalography , Humans , Migraine with Aura/physiopathology
2.
Lab Chip ; 19(15): 2537-2548, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31290529

ABSTRACT

We present approaches to facilitate the use of microfluidics outside of the laboratory, in our case within a clinical setting and monitoring from human subjects, where the complexity of microfluidic devices requires high skill and expertise and would otherwise limit translation. Microfluidic devices show great potential for converting complex laboratory protocols into on-chip processes. We demonstrate a flexible microfluidic platform can be coupled to microfluidic biosensors and used in conjunction with clinical microdialysis. The versatility is demonstrated through a series of examples of increasing complexity including analytical processes relevant to a clinical environment such as automatic calibration, standard addition, and more general processes including system optimisation, reagent addition and homogenous enzyme reactions. The precision and control offered by this set-up enables the use of microfluidics by non-experts in clinical settings, increasing uptake and usage in real-world scenarios. We demonstrate how this type of system is helpful in guiding physicians in real-time clinical decision-making.


Subject(s)
Biosensing Techniques/instrumentation , Lab-On-A-Chip Devices , Translational Research, Biomedical , Brain Injuries, Traumatic/diagnosis , Calibration , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Microdialysis
3.
Lab Chip ; 19(11): 2038-2048, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31094398

ABSTRACT

This paper presents the design, optimisation and fabrication of a mechanically robust 3D printed microfluidic device for the high time resolution online analysis of biomarkers in a microdialysate stream at microlitre per minute flow rates. The device consists of a microfluidic channel with secure low volume connections that easily integrates electrochemical biosensors for biomarkers such as glutamate, glucose and lactate. The optimisation process of the microfluidic channel fabrication, including for different types of 3D printer, is explained and the resulting improvement in sensor response time is quantified. The time resolution of the device is characterised by recording short lactate concentration pulses. The device is employed to record simultaneous glutamate, glucose and lactate concentration changes simulating the physiological response to spreading depolarisation events in cerebrospinal fluid dialysate. As a proof-of-concept study, the device is then used in the intensive care unit for online monitoring of a brain injury patient, demonstrating its capabilities for clinical monitoring.


Subject(s)
Brain/metabolism , Lab-On-A-Chip Devices , Microdialysis/instrumentation , Neurochemistry/instrumentation , Printing, Three-Dimensional , Biosensing Techniques , Brain/cytology , Equipment Design , Humans , Online Systems , Signal-To-Noise Ratio
4.
J Cereb Blood Flow Metab ; 37(5): 1595-1625, 2017 05.
Article in English | MEDLINE | ID: mdl-27317657

ABSTRACT

Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches.


Subject(s)
Brain Injuries/physiopathology , Cortical Spreading Depression/physiology , Critical Care/methods , Gray Matter/physiopathology , Neurophysiological Monitoring/methods , Stroke/physiopathology , Brain Injuries/diagnosis , Brain Injuries/therapy , Cerebrovascular Circulation , Electrocorticography , Humans , Practice Guidelines as Topic , Stroke/diagnosis , Stroke/therapy
5.
J Cereb Blood Flow Metab ; 37(5): 1883-1895, 2017 May.
Article in English | MEDLINE | ID: mdl-27798268

ABSTRACT

Spreading depolarizations occur spontaneously and frequently in injured human brain. They propagate slowly through injured tissue often cycling around a local area of damage. Tissue recovery after an spreading depolarization requires greatly augmented energy utilisation to normalise ionic gradients from a virtually complete loss of membrane potential. In the injured brain, this is difficult because local blood flow is often low and unreactive. In this study, we use a new variant of microdialysis, continuous on-line microdialysis, to observe the effects of spreading depolarizations on brain metabolism. The neurochemical changes are dynamic and take place on the timescale of the passage of an spreading depolarization past the microdialysis probe. Dialysate potassium levels provide an ionic correlate of cellular depolarization and show a clear transient increase. Dialysate glucose levels reflect a balance between local tissue glucose supply and utilisation. These show a clear transient decrease of variable magnitude and duration. Dialysate lactate levels indicate non-oxidative metabolism of glucose and show a transient increase. Preliminary data suggest that the transient changes recover more slowly after the passage of a sequence of multiple spreading depolarizations giving rise to a decrease in basal dialysate glucose and an increase in basal dialysate potassium and lactate levels.


Subject(s)
Brain Injuries/physiopathology , Cortical Spreading Depression/physiology , Glucose/metabolism , Lactic Acid/metabolism , Microdialysis , Neurophysiological Monitoring/methods , Potassium/metabolism , Brain Injuries/metabolism , Coma/metabolism , Coma/physiopathology , Electrocorticography , Humans , Online Systems
6.
Neurocrit Care ; 20(1): 21-31, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24343564

ABSTRACT

BACKGROUND: Spreading depolarization events following ischemic and traumatic brain injury are associated with poor patient outcome. Currently, monitoring these events is limited to patients in whom subdural electrodes can be placed at open craniotomy. This study examined whether these events can be detected using intra-cortical electrodes, opening the way for electrode insertion via burr hole. METHODS: Animal work was carried out on adult Sprague-Dawley rats in a laboratory setting to investigate the feasibility of recording depolarization events. Subsequently, 8 human patients requiring craniotomy for traumatic brain injury or aneurysmal subarachnoid hemorrhage were monitored for depolarization events in an intensive care setting with concurrent strip (subdural) and depth (intra-parenchymal) electrode recordings. RESULTS: (1) Depolarization events can be reliably detected from intra-cortically placed electrodes. (2) A reproducible slow potential change (SPC) waveform morphology was identified from intra-cortical electrodes on the depth array. (3) The depression of cortical activity known to follow depolarization events was identified consistently from both intra-cortical and sub-cortical electrodes on the depth array. CONCLUSIONS: Intra-parenchymally sited electrodes can be used to consistently identify depolarization events in humans. This technique greatly extends the capability of monitoring for spreading depolarization events in injured patients, as electrodes can be sited without the need for craniotomy. The method provides a new investigative tool for the evaluation of the contribution of these events to secondary brain injury in human patients.


Subject(s)
Brain Injuries/physiopathology , Cerebral Cortex/physiopathology , Electrodes, Implanted , Electroencephalography/methods , Adult , Aged , Animals , Brain Injuries/surgery , Electrodes, Implanted/standards , Electroencephalography/instrumentation , Electrophysiological Phenomena , Feasibility Studies , Humans , Male , Middle Aged , Rats , Rats, Sprague-Dawley , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...