Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Org Chem ; 89(1): 719-724, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38149308

ABSTRACT

This study presents a stepwise exoselective [3 + 2] cycloaddition reaction of alkynols with ketones, leading to the synthesis of 4-methylene-1,3-dioxolane derivatives. Remarkably, without any Thorpe-Ingold induced effect, the cyclization reaction was demonstrated with complete regio- and chemoselectivity, which was solely promoted by cesium carbonate. A wide range of unactivated ketones are viable under these mild reaction conditions, and both primary and tertiary alkynols are compatible with these cyclization reactions. We have prepared a diverse array of highly dense exomethylene 1,3-dioxolane rings demonstrating a remarkable tolerance for various functional groups.

2.
Sci Rep ; 11(1): 17523, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471155

ABSTRACT

Exposure to arsenic, a ubiquitous metalloid on Earth, results in human cancers. Skin cancer is the most common arsenical cancers. Both autophagy and aquaporin pathway are known to promote carcinogenesis. However, the mechanisms by which arsenic regulates aquaporin and autophagy in arsenical skin cancers remain elusive. This study aims to address how arsenic regulates aquaporin-3, the predominant aquaporin in epidermal keratinocytes, and how this process would induce autophagy. Quantitative real-time PCR and immunofluorescence were used to measure the expression of aquaporin 3 in arsenical skin cancers and arsenic-treated keratinocytes. Beclin-1 expression and autophagy were measured. We examined if blocking aquaporin 3 could interfere arsenic-induced autophagy in keratinocytes. Expression of aquaporin 3 is increased in arsenical cancers and in arsenic-treated keratinocytes. Arsenic induced autophagy in primary human keratinocytes. Notably, the arsenic-induced autophagy was inhibited by pretreatment of keratinocytes with aquaporin inhibitors Auphen or AgNO3, or RNA interference against aquaporin 3. The data indicates that the aquaporin 3 is an important cell membrane channel to mediate arsenic uptake and contributes to the arsenic-induced autophagy.


Subject(s)
Aquaporin 3/metabolism , Arsenic/pharmacology , Autophagy/drug effects , Keratinocytes/drug effects , Aged , Aged, 80 and over , Beclin-1/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Humans , Keratinocytes/metabolism , Male , Middle Aged , Organogold Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL