Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 40(21): 11434-11447, 2022.
Article in English | MEDLINE | ID: mdl-34369311

ABSTRACT

Development of antiviral drugs is an urgent need to control and prevent the presently circulating H5N1 avian influenza virus which is affects the human respiratory tract. The complex crystal structure of N1-N-acetylneuranamic acid (sialic acid, SIA) is not available as complex and hence SIA and zanamivir (ZMR) are docked into the binding site of N1 neuraminidase. Based on the analysis, the initial complex structures have been simulated for 120 ns to get insight into the binding modes and interaction between protein-ligand complex systems. NAMD pair interaction energy and MM-PBSA binding free energy are calculated and show that there are two possible binding modes (BM1 and BM2) for N1-SIA and a single binding mode (BM1) for and N1-ZMR complex structures respectively. BM1 of N1-SIA is the most preferred binding mode. On contrary to the currently available drugs in which the chair conformation is distorted, in both the binding modes of N1-SIA, the binding pocket of N1 neuraminidase is able to accommodate SIA in 2C5 chair conformation which is the preferred conformation of SIA in solution state. In N1-ZMR complex, ZMR is bind in a distorted chair conformation. The neuraminidase binding pocket is also able to accommodate galactose of SIAα(2→3)GAL and SIAα(2→6)GAL. RMSD, RMSF and hydrogen bonding analyses have been carried out to identify the conformational flexibility and structural stability of each complex system. All the analyses show that SIA can be used as an inhibitor for N1 neuraminidase of H5N1 influenza viral infection. Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Influenza A Virus, H5N1 Subtype , Neuraminidase , Antiviral Agents/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , N-Acetylneuraminic Acid/chemistry , Neuraminidase/chemistry , Zanamivir/pharmacology , Zanamivir/chemistry
2.
J Biomol Struct Dyn ; 38(12): 3504-3513, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31594458

ABSTRACT

Influenza epidemics and pandemics are caused by influenza A virus. The cell surface protein of hemagglutinin and neuraminidase is responsible for viral infection and release of progeny virus on the host cell membrane. Now 18 hemagglutinin and 11 neuraminidase subtypes are identified. The avian influenza virus of H5N1 is an emergent threat to public health issues. To control the influenza viral infection it is necessary to develop antiviral inhibitors and vaccination. In the present investigation we carried out 50 ns Molecular Dynamics simulation on H5 hemagglutinin of Influenza A virus H5N1 complexed with fluorinated sialic acid by substituting fluorine atoms at any two hydroxyls of sialic acid by considering combinatorial combination. The binding affinity between the protein-ligand complex system is investigated by calculating pair interaction energy and MM-PBSA binding free energy. All the complex structures are stabilized by hydrogen bonding interactions between the H5 protein and the ligand fluorinated sialic acid. It is concluded from all the analyses that the fluorinated complexes enhance the inhibiting potency against H5 hemagglutinin and the order of inhibiting potency is SIA-F9 ≫ SIA-F2 ≈ SIA-F7 ≈ SIA-F2F4 ≈ SIA-F2F9 ≈ SIA-F7F9 > SIA-F7F8 ≈ SIA-F2F8 ≈ SIA-F8F9 > SIA-F4 ≈ SIA-F4F7 ≈ SIA-F4F8 ≈ SIA-F8 ≈ SIA-F2F7 ≈ SIA > SIA-F4F9. This study suggests that one can design the inhibitor by using the mono fluorinated models SIA-F9, SIA-F2 and SIA-F7 and difluorinated models SIA-F2F4, SIA-F2F9 and SIA-F7F9 to inhibit H5 of H5N1 to avoid Influenza A viral infection.Communicated by Ramaswamy H. Sarma.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza, Human , Orthomyxoviridae , Animals , Hemagglutinin Glycoproteins, Influenza Virus , Influenza, Human/drug therapy , Molecular Dynamics Simulation , N-Acetylneuraminic Acid
3.
J Biomol Struct Dyn ; 37(18): 4813-4824, 2019 11.
Article in English | MEDLINE | ID: mdl-30686127

ABSTRACT

Abbreviations HA Hemagglutinin MD Molecular Dynamics MM-PBSA Molecular Mechanics Poisson-Boltzmann Surface Area NA Neuraminidase NAMD Nanoscale Molecular Dynamic Simulation PMEMD Particle Mesh Ewald Molecular Dynamics RMSD Root-Mean-Square Deviation RMSF Root-Mean-Square Fluctuation SIA sialic acid VMD Visual Molecular Dynamics Communicated by Ramaswamy H. Sarma.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A Virus, H5N1 Subtype/chemistry , N-Acetylneuraminic Acid/chemistry , Binding Sites , Hydrogen Bonding , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , N-Acetylneuraminic Acid/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...