Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 276: 126152, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38718642

ABSTRACT

To enhance food safety, the need for swift and precise detection of B. licheniformis, a bacterium prevalent in various environments, including soil and food products, is paramount. This study presents an innovative and cost-effective bioassay designed to specifically identify the foodborne pathogen, B. licheniformis, utilizing a colorimetric signal approach. The biosensor, featuring a 3D-printed architecture, incorporates a casein-based liquid-proof gelatine film, selectively liquefying in response to the caseinolytic/proteolytic activity of external enzymes from the pathogen. As the sample liquefies, it progresses through a color layer, causing the migration of dye to an absorbent layer, resulting in a distinct positive signal. This bioassay exhibits exceptional sensitivity, detecting concentrations as low as 1 CFU/mL within a 9.3-h assay duration. Notably, this cost-efficient bioassay outperforms conventional methods in terms of efficacy and cost-effectiveness, offering a straightforward solution for promptly detecting B. licheniformis in food samples.


Subject(s)
Bacillus licheniformis , Biosensing Techniques , Food Microbiology , Food Safety , Biosensing Techniques/methods , Food Microbiology/methods , Bacillus licheniformis/enzymology , Colorimetry/methods , Food Contamination/analysis
2.
BMC Plant Biol ; 18(1): 222, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30305029

ABSTRACT

BACKGROUND: Branch canker caused by Macrophoma theicola is a major stem disease of tea plants (Camellia spp.). In tea plantations, this disease causes crop loss and it is one of the major limiting factor for yield stagnation. In very few instances it causes considerable damage in new clearings (about 3 or 4 years old) and large number of bushes have been killed. As there is no control measures for branch canker disease in south Indian tea plantation, this field study was conducted in naturally infected pruned tea field at UPASI Tea Research Institute (Good Agricultural Practice), Valparai, Tamil Nadu, India. METHODS: The chemical fungicides, biological agents and bio products were evaluated under naturally infected field of seedling plants for two consecutive disease seasons (2014-2015) and there was 11 treatments with three applications. All the treatments were carried out in the time of February-March and October-November (2014-2015). The two set of application was conducted per year. Each set contains eight rounds during the month of February-March as well as October-November (2014-2015). The chemical fungicides, biological agents and commercial bio products were measured as per UPASI- TRF, recommendation viz., COC (50 g/ha and 0.2 g/plot), Companion (20 g/ha and 0.08 g/plot), biological agent of Bacillus amyloliquefaciens, Tichoderma harzianum, Gliocladium virens and Beauveria bassiana (5 kg/ha and 20.8 g/plot) and bio product of Tari (1 L/ha and 4.2 ml/plot) and Tricure (1 L/ha and 4.2 ml/plot). RESULTS: The present investigation revealed the integrated application of Companion/Bacillus amyloliquefaciens showed superior control of branch canker disease followed by the treatment with Companion alone under field condition. Copper oxychloride/Bacillus amyloliquefaciens was moderately effective followed by Copper oxychloride. The significantly reduced canker size was recorded with treatment of Bacillus amyloliquefaciens followed by commercial organic fungicides of Tari (Organic Tea Special) and Tricure (0.03% Azadirachtin). The least canker size was observed with Gliocladium virens followed by Beauveria bassiana. Branch canker disease incidence was increased in untreated control plants when compared to treated plants. CONCLUSION: Among these 11 treatments, the integrated treatment of companion at rate of 0.08 g and Bacillus amyloliquefaciens (20.8 g) showed the most significantly decreased canker size (DPL, 5.76) followed by another treatment with companion (0.08 g) (DPL, 4.11). The moderate reduction of canker size was observed by the treatment with Copper oxychloride (0.2 g)/Bacillus amyloliquefaciens (20.8 g) (DPL, 3.05) followed by the treatment of copper oxychloride alone (DPL, 1.74). Therefore, the integrated application of Companion/Bacillus amyloliquefaciens proved significantly effective in the management of branch canker disease under the field conditions.


Subject(s)
Ascomycota/pathogenicity , Biological Control Agents/pharmacology , Camellia sinensis/microbiology , Fungicides, Industrial/pharmacology , Bacillus amyloliquefaciens , Beauveria , Camellia sinensis/drug effects , Copper/pharmacology , Gliocladium , India , Plant Diseases/microbiology , Trichoderma
SELECTION OF CITATIONS
SEARCH DETAIL
...