Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Cybern ; PP2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35749333

ABSTRACT

This article presents a new approach for providing an interpretation for a spiking neural network classifier by transforming it to a multiclass additive model. The spiking classifier is a multiclass synaptic efficacy function-based leaky-integrate-fire neuron (Mc-SEFRON) classifier. As a first step, the SEFRON classifier for binary classification is extended to handle multiclass classification problems. Next, a new method is presented to transform the temporally distributed weights in a fully trained Mc-SEFRON classifier to shape functions in the feature space. A composite of these shape functions results in an interpretable classifier, namely, a directly interpretable multiclass additive model (DIMA). The interpretations of DIMA are also demonstrated using the multiclass Iris dataset. Further, the performances of both the Mc-SEFRON and DIMA classifiers are evaluated on ten benchmark datasets from the UCI machine learning repository and compared with the other state-of-the-art spiking neural classifiers. The performance study results show that Mc-SEFRON produces similar or better performances than other spiking neural classifiers with an added benefit of interpretability through DIMA. Furthermore, the minor differences in accuracies between Mc-SEFRON and DIMA indicate the reliability of the DIMA classifier. Finally, the Mc-SEFRON and DIMA are tested on three real-world credit scoring problems, and their performances are compared with state-of-the-art results using machine learning methods. The results clearly indicate that DIMA improves the classification accuracy by up to 12% over other interpretable classifiers indicating a better quality of interpretations on the highly imbalanced credit scoring datasets.

2.
IEEE Trans Neural Netw Learn Syst ; 30(4): 1231-1240, 2019 04.
Article in English | MEDLINE | ID: mdl-30273156

ABSTRACT

This paper presents a new time-varying long-term Synaptic Efficacy Function-based leaky-integrate-and-fire neuRON model, referred to as SEFRON and its supervised learning rule for pattern classification problems. The time-varying synaptic efficacy function is represented by a sum of amplitude modulated Gaussian distribution functions located at different times. For a given pattern, the SEFRON's learning rule determines the changes in the amplitudes of weights at selected presynaptic spike times by minimizing a new error function reflecting the differences between the desired and actual postsynaptic firing times. Similar to the gamma-aminobutyric acid-switch phenomenon observed in a biological neuron that switches between excitatory and inhibitory postsynaptic potentials based on the physiological needs, the time-varying synapse model proposed in this paper allows the synaptic efficacy (weight) to switch signs in a continuous manner. The computational power and the functioning of SEFRON are first illustrated using a binary pattern classification problem. The detailed performance comparisons of a single SEFRON classifier with other spiking neural networks (SNNs) are also presented using four benchmark data sets from the UCI machine learning repository. The results clearly indicate that a single SEFRON provides a similar generalization performance compared to other SNNs with multiple layers and multiple neurons.

SELECTION OF CITATIONS
SEARCH DETAIL
...