Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(35): 23395-23416, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37548243

ABSTRACT

The non-additive three-body interaction potential for helium was computed using the coupled-cluster theory and the full configuration interaction method. The obtained potential comprises an improved nonrelativistic Born-Oppenheimer energy and the leading relativistic and nuclear-motion corrections. The mean absolute uncertainty of our calculations due to the incompleteness of the orbital basis set was determined employing complete-basis-set extrapolation techniques and was found to be 1.2%. For three helium atoms forming an equilateral triangle with the side length of 5.6 bohr - a geometry close to the minimum of the total potential energy surface - our three-body potential amounts to -90.6 mK, with an estimated uncertainty of 0.5 mK. An analytic function, developed to accurately fit the computed three-body interaction energies, was chosen to correctly describe the asymptotic behavior of the three-body potential for trimer configurations corresponding to both the three-atomic and the atom-diatom fragmentation channels. For large triangles with sides r12, r23, and r31, the potential takes correctly into account all angular terms decaying as r-l12 r-m23 r-n21 with l + m + n ≤ 14 for the nonrelativistic Born-Oppenheimer energy and l + m + n ≤ 9 for the post-Born-Oppenheimer corrections. We also developed a short-range analytic function describing the local behavior of the total uncertainty of the computed three-body interaction energies. Using both fits we calculated the third pressure and acoustic virial coefficients for helium and their uncertainties for a wide range of temperatures. The results of these calculations were compared with available experimental data and with previous theoretical determinations. The estimated uncertainties of present calculations are 3-5 times smaller than those reported in the best previous works.

2.
Phys Chem Chem Phys ; 13(42): 18893-904, 2011 Nov 14.
Article in English | MEDLINE | ID: mdl-21863177

ABSTRACT

State-of-the-art ab initio techniques have been applied to compute the potential energy curves for the SrYb molecule in the Born-Oppenheimer approximation for the electronic ground state and the first fifteen excited singlet and triplet states. All the excited state potential energy curves were computed using the equation of motion approach within the coupled-cluster singles and doubles framework and large basis-sets, while the ground state potential was computed using the coupled cluster method with single, double, and noniterative triple excitations. The leading long-range coefficients describing the dispersion interactions at large interatomic distances are also reported. The electric transition dipole moments have been obtained as the first residue of the polarization propagator computed with the linear response coupled-cluster method restricted to single and double excitations. Spin-orbit coupling matrix elements have been evaluated using the multireference configuration interaction method restricted to single and double excitations with a large active space. The electronic structure data were employed to investigate the possibility of forming deeply bound ultracold SrYb molecules in an optical lattice in a photoassociation experiment using continuous-wave lasers. Photoassociation near the intercombination line transition of atomic strontium into the vibrational levels of the strongly spin-orbit mixed b(3)Σ(+), a(3)Π, A(1)Π, and C(1)Π states with subsequent efficient stabilization into the v'' = 1 vibrational level of the electronic ground state is proposed. Ground state SrYb molecules can be accumulated by making use of collisional decay from v'' = 1 to v'' = 0. Alternatively, photoassociation and stabilization to v'' = 0 can proceed via stimulated Raman adiabatic passage provided that the trapping frequency of the optical lattice is large enough and phase coherence between the pulses can be maintained over at least tens of microseconds.

3.
J Chem Phys ; 127(12): 124303, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17902899

ABSTRACT

Symmetry-adapted perturbation theory (SAPT) was applied to the helium dimer for interatomic separations R from 3 to 12 bohrs. The first-order interaction energy and the bulk of the second-order contribution were obtained using Gaussian geminal basis sets and are converged to about 0.1 mK near the minimum and for larger R. The remaining second-order contributions available in the SAPT suite of codes were computed using very large orbital basis sets, up to septuple-zeta quality, augmented by diffuse and midbond functions. The accuracy reached at this level was better than 1 mK in the same region. All the remaining components of the interaction energy were computed using the full configuration interaction method in bases up to sextuple-zeta quality. The latter components, although contributing only 1% near the minimum, have the largest uncertainty of about 10 mK in this region. The total interaction energy at R=5.6 bohrs is -11.000+/-0.011 K. For R< or =6.5 bohrs, the supermolecular (SM) interaction energies computed by us recently turned out to be slightly more accurate. Therefore, we have combined the SM results for R< or =6.5 bohrs with the SAPT results from 7.0 to 12 bohrs to fit analytic functions for the potential and for its error bars. The potential fit uses the best available van der Waals constants C(6) through C(16), including C(11), C(13), and C(15), and is believed to be the best current representation of the Born-Oppenheimer (BO) potential for helium. Using these fits, we found that the BO potential for the helium dimer exhibits the well depth D(e)=11.006+/-0.004 K, the equilibrium distance R(e)=5.608+/-0.012 bohrs, and supports one bound state for (4)He(2) with the dissociation energy D(0)=1.73+/-0.04 mK, and the average interatomic separation R=45.6+/-0.5 A.

4.
J Phys Chem A ; 111(44): 11311-9, 2007 Nov 08.
Article in English | MEDLINE | ID: mdl-17595067

ABSTRACT

Two nonadditive three-body analytic potentials for helium were obtained: one based on three-body symmetry-adapted perturbation theory (SAPT) and the other one on supermolecular coupled-cluster theory with single, double, and noniterative triple excitations [CCSD(T)]. Large basis sets were used, up to the quintuple-zeta doubly augmented size. The fitting functions contain an exponentially decaying component describing the short-range interactions and damped inverse powers expansions for the third- and fourth-order dispersion contributions. The SAPT and CCSD(T) potentials are very close to each other. The largest uncertainty of the potentials comes from the truncation of the level of theory and can be estimated to be about 10 mK or 10% at trimer's minimum configuration. The relative uncertainties for other configurations are also expected to be about 10% except for regions where the nonadditive contribution crosses zero. Such uncertainties are of the same order of magnitude as the current uncertainties of the two-body part of the potential.

5.
J Phys Chem A ; 111(31): 7611-23, 2007 Aug 09.
Article in English | MEDLINE | ID: mdl-17550239

ABSTRACT

Nonrelativistic clamped-nuclei pair interaction energy for ground-state helium atoms has been computed for 12 interatomic separations ranging from 3.0 to 9.0 bohr. The calculations applied the supermolecular approach. The major part of the interaction energy was obtained using the Gaussian geminal implementation of the coupled-cluster theory with double excitations (CCD). Relatively small contributions from single, triple, and quadruple excitations were subsequently included employing the conventional orbital coupled-cluster method with single, double, and noniterative triple excitations [CCSD(T)] and the full configuration interaction (FCI) method. For three distances, the single-excitation contribution was taken from literature Gaussian-geminal calculations at the CCSD level. The orbital CCSD(T) and FCI calculations used very large basis sets, up to doubly augmented septuple- and sextuple-zeta size, respectively, and were followed by extrapolations to the complete basis set limits. The accuracy of the total interaction energies has been estimated to be about 3 mK or 0.03% at the minimum of the potential well. For the attractive part of the well, the relative errors remain consistently smaller than 0.03%. In the repulsive part, the accuracy is even better, except, of course, for the region where the potential goes through zero. For interatomic separations smaller than 4.0 bohr, the relative errors do not exceed 0.01%. Such uncertainties are significantly smaller than the expected values of the relativistic and diagonal Born-Oppenheimer contributions to the potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...