Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 193: 115211, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37392592

ABSTRACT

Anthropogenic marine litter (mainly plastic pollution) is a serious concern globally. The interactions between terrestrial and marine ecosystems lead to the accumulation of marine litter in the intertidal zone. The biofilm-forming bacteria tend to colonize on surfaces of marine litter which are composed of diverse bacteria and are less studied. The present study investigated the bacterial community composition using both culturable and non-culturable (Next-generation sequencing (NGS)) approaches associated with the marine litter (polyethylene (PE), styrofoam (SF) and fabric (FB)) at three distinct locations (Alang, Diu and Sikka) of the Arabian Sea, Gujarat, India. Predominant bacteria observed using culturable and NGS techniques belonged to Proteobacteria phyla. Alphaproteobacteria class dominated on polyethylene and styrofoam surfaces in the culturable fraction among the sites while the Bacillus dominated fabric surfaces. In the metagenomics fraction, Gammaproteobacteria dominated the surfaces except for PE and SF surfaces from Sikka and Diu, respectively. The PE surface at Sikka was dominated by Fusobacteriia while SF surface from Diu was dominated by Alphaproteobacteria. Both culture-dependent and NGS approaches identified hydrocarbon-degrading bacteria as well as pathogenic bacteria on the surfaces. The outcome of the present study illustrates diverse bacterial assemblages which occur on marine litter and increases our understanding of the plastisphere community.


Subject(s)
Ecosystem , Polystyrenes , Plastics , Bacteria , Polyethylene
3.
Mar Pollut Bull ; 180: 113732, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35594757

ABSTRACT

The community composition and distribution of early-stage (24 h) biofilm-forming bacteria on two different surfaces (glass slide and polystyrene plastic slide) at three different locations (Diu, Alang and Sikka) were studied using a culture-dependent and next-generation sequencing (NGS) approach in the Arabian Sea, Gujarat, India. The most dominant phyla observed using the NGS approach were the Proteobacteria among the sampling sites. Gammaproteobacteria class dominated both the surfaces among the sites and accounted for 46.7% to 89.2% of total abundance. The culture-dependent analysis showed Proteobacteria and Firmicutes as the dominant phyla on the surfaces within the sampling sites. During the initial colonization, hydrocarbon-degrading bacterial strains have also attached to the surfaces. The outcome of this study would be of great importance for targeting the early stage biofilm-forming and hydrocarbon-degrading bacterial isolates may help to degrade plastic in the marine environment.


Subject(s)
Bacteria , Seawater , Bacteria/genetics , Biofilms , Plastics , Proteobacteria/genetics , RNA, Ribosomal, 16S , Seawater/microbiology
4.
Mar Pollut Bull ; 175: 113366, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35114543

ABSTRACT

Biodegradation of polyvinyl chloride (PVC) by marine bacteria is a sustainable approach that leads to the production of different by-products but their toxicity needs to be evaluated. In the present study, polyvinyl chloride degradation products (PVCDP) produced by three marine bacterial isolates (T-1.3, BP-4.3 and S-237) in the culture supernatant were evaluated for toxicity on the germination of Vigna radiata and growth of Ulva lactuca. A total of 24 compounds comprising of benzene, fatty acid, ether, ester and plastic stabilizer (tris (2, 4-di-tert-butylphenyl) phosphate) were identified by GC-MS using diethyl ether solvent extraction from the supernatant. The per cent germination rate of the seed treated with PVCDP showed no significant effect but germination index and elongation inhibition rate were influenced significantly by PVCDP treatments. In seaweed (U. lactuca), PVCDP showed improvement in the daily growth rate. After ten days of treatment with PVCDP, pigment contents were improved in seaweed and PVCDP (2%) of isolate T-1.3 recorded the highest chlorophyll-a and chlorophyll-b.


Subject(s)
Seaweed , Ulva , Vigna , Bacteria , Polyvinyl Chloride
5.
Front Microbiol ; 12: 751571, 2021.
Article in English | MEDLINE | ID: mdl-34646260

ABSTRACT

Polyethylene terephthalate (PET) is a common single-use plastic that accumulated in the environment because of its non-degradable characteristics. In recent years, microbes from different environments were found to degrade plastics and suggested their capability to degrade plastics under varying environmental conditions. However, complete degradation of plastics is still a void for large-scale implications using microbes because of the lack of knowledge about genes and pathways intricate in the biodegradation process. In the present study, the growth and adherence of marine Bacillus species AIIW2 on PET surface instigating structural deterioration were confirmed through weight loss and hydrophobicity reduction, as well as analyzing the change in bond indexes. The genome-wide comparative transcriptomic analysis of strain AIIW2 was completed to reveal the genes during PET utilization. The expression level of mRNA in the strain AIIW2 was indexed based on the log-fold change between the presence and absence of PET in the culture medium. The genes represent carbon metabolism, and the cell transport system was up-regulated in cells growing with PET, whereas sporulation genes expressed highly in the absence of PET. This indicates that the strain AIIW2 hydrolyzes PET and assimilated via cellular carbon metabolism. A protein-protein interaction network was built to obtain the interaction between genes during PET utilization. The genes traced to degrade PET were confirmed by detecting the hydrolytic product of PET, and genes were cloned to improve PET utilization by microbial system as an eco-friendly solution.

6.
Mar Pollut Bull ; 169: 112566, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34089962

ABSTRACT

Polyvinyl chloride (PVC) is the third one after polyethylene and polypropylene in the production demand. It intends to grow further, causing an increase in the risk of health and ecological problems due to environmental accumulation and incineration. In the present study, we determined the biodegradative abilities of marine bacteria for PVC. Three potential marine bacterial isolates, T-1.3, BP-4.3 and S-237 (Vibrio, Altermonas and Cobetia, respectively) were identified after preliminary screening. They led to active biofilm formation, viability and protein formation on the PVC surface. The highest weight loss (1.76%) of PVC films was exhibited by BP-4.3 isolate after 60 days of incubation. Remineralization of PVC film was confirmed by CO2 assimilation assay. Change in surface topography was confirmed by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The functional group peak intensity was decreased for the terminal chlorine group at the region 1000-1300 cm-1, which indicated the dechlorination. Thermogravimetric, tensile strength and contact angle analysis showed a decline in the mechanical properties and a rise in PVC film's hydrophilic nature after biodegradation. These results demonstrated promising evidence of PVC degradation by marine bacteria.


Subject(s)
Bacteria , Polyvinyl Chloride , Biodegradation, Environmental , Polyethylene , Polypropylenes
7.
Gene ; 786: 145597, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33766708

ABSTRACT

We hereby report in planta function characterization of a novel galactosyl transferase-like (SbGalT) gene from Salicornia brachiata for enhanced abiotic stress tolerance. The SbGalT gene had an open reading frame of 1563 bp. The ectopic expression of SbGalT gene in tobacco improved the seed germination, seedling growth, biomass accumulation and potassium/sodium ratio under salt and osmotic stress. The SbGalT over-expression delayed stress-induced senescence, pigment break-down and ion induced cytotoxicity in tobacco. Higher contents of organic solutes and potassium under stress maintained the osmotic homeostasis and relative water content in tobacco. Higher activity of antioxidant enzymes under stress in transgenic tobacco curtailed the accumulation of reactive oxygen species (ROS) and maintained the membrane integrity. The chlorophyll a fluorescence transient indicated no effects of the imposed strengths of stress on basal state of photosystem (PS) I in transgenic tobacco over-expressing the SbGalT gene. Due to improved membrane integrity, the transgenic tobacco exhibited improved photosynthesis, stomatal conductance, intercellular CO2, transpiration, maximum quantum yield and operating efficiency of PSII, electron transport, photochemical and non-photochemical quenching. In agreement with photosynthesis, physiological health, tolerance index and growth parameters, transgenic tobacco accumulated higher contents of sugar, starch, amino acid, polyphenol and proline under stress conditions. The multivariate data analysis exhibited significant statistical distinctions among osmotic adjustment, physiological health and growth, and photosynthetic responses in control and SbGalT transgenic tobacco under stress conditions. The results strongly indicated novel SbGalT gene as a potential candidate for developing the smart agriculture.


Subject(s)
Chenopodiaceae/enzymology , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Nicotiana/physiology , Chenopodiaceae/genetics , Chlorophyll A , Cloning, Molecular , Gene Expression Regulation, Plant , Open Reading Frames , Photosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/physiology , Reactive Oxygen Species/metabolism , Stress, Physiological , Nicotiana/genetics
8.
Biodegradation ; 32(2): 127-143, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33544248

ABSTRACT

Polyethylene has considered as non-degradable for decades, and their degradation through marine bacteria has rarely studied. However, LDPE found a significant source of pollution in the marine environment. In the present study, four bacterial strains capable of biodegradation of LDPE were isolated from the marine environment. These bacterial isolates H-237, H-255, H-256 and H-265 were revealed close similarity with Cobetia sp., Halomonas sp., Exigobacterium sp. and Alcanivorax sp., respectively based on 16S rRNA gene sequencing method. These bacterial isolates were individually incubated for 90 days supplied with LDPE films as a carbon source using the Bushnell-Haas medium. During the biodegradation assay, bacterial isolates were formed the viable biofilm on the LDPE surface, which decreased the thermal stability of the films. At the end of the incubation study, a maximum weight loss of 1.72% of LDPE film was observed by the bacterial isolate H-255. The bacterial attachment on the film changed the physical structure (surface erosion, roughness and degradation) which were confirmed by field emission scanning electron microscopy and atomic force microscopy. The changes in the chemical structure of the LDPE film were analyzed by Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR). This ATR-FTIR showed the shifting of peaks of C-H stretch and C=C bond stretching and the new peaks formation of C-O and -C=C- bonds in comparison to control LDPE film. Further, biodegradation of LDPE film was also confirmed by remineralization of carbon and enzymatic activities. This study revealed that the active biodegradation of LDPE film by marine bacteria and these bacteria could reduce plastic pollution in the marine environment.


Subject(s)
Plastics , Polyethylene , Bacteria/genetics , Biodegradation, Environmental , RNA, Ribosomal, 16S/genetics
9.
Microbiol Res ; 246: 126708, 2021 May.
Article in English | MEDLINE | ID: mdl-33529791

ABSTRACT

Actinobacteria are well-recognised biosynthetic factories that produce an extensive spectrum of secondary metabolites. Recent genomic insights seem to impact the exploitation of these metabolically versatile bacteria in several aspects. Notably, from the isolation of novel taxa to the discovery of new compounds, different approaches evolve at a steady pace. Here, we systematically discuss the enduring importance of Actinobacteria in the field of drug discovery, the current focus of isolation efforts targeting bioactive Actinobacteria from diverse sources, recent discoveries of novel compounds with different bioactivities, and the relative employment of different strategies in the search for novel compounds. Ultimately, we highlight notable progress that will have profound impacts on future quests for secondary metabolites of Actinobacteria.


Subject(s)
Actinobacteria/genetics , Actinobacteria/isolation & purification , Biological Products/isolation & purification , Drug Discovery/trends , Anti-Infective Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Genome, Bacterial , Immunosuppressive Agents/isolation & purification
10.
J Basic Microbiol ; 61(1): 37-44, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33006156

ABSTRACT

The endemic spread of plastic in the environment requires urgent need of a sustainable approach. Marine microbes found to have vast bioactivity and play a central role in biogeochemical cycling in the ocean; however, very few of them had been explored for biochemical cycling or plastic degradation. In the present study, we report the draft genome sequence of marine Bacillus sp. AIIW2 which was found to utilize plastic as a carbon source. The Bacillus sonorensis SRCM101395 was used as a reference genome for mapping the reads. The genome size of strain AIIW2 was approximately 4.4 Mb and composed of 4737 coding sequences with 45.7% G + C contents. The whole genome comparison of strain AIIW2 with three closest Bacillus strains showed strain specificity, the 16S ribosomal RNA sequence shows 99.93% similarity with Bacillus paralicheniformis KJ-16T (KY694465). This genome data would provide the genetic basis in developing plastic bioremediation approaches and discover the enzymes pertinent in the biodegradation processes.


Subject(s)
Bacillus/genetics , Genome, Bacterial/genetics , Plastics/metabolism , Bacillus/classification , Bacillus/isolation & purification , Bacillus/metabolism , Biodegradation, Environmental , DNA, Bacterial/genetics , Genes, Bacterial/genetics , Oceans and Seas , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity
11.
Physiol Plant ; 172(2): 1170-1188, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33206416

ABSTRACT

A potent cold and drought regulatory-protein encoding gene, SbCDR was cloned from an extreme halophyte Salicornia brachiata. In vitro localisation study, performed with SbCDR::RFP gene-construct revealed that SbCDR is a membrane protein. Overexpression of the SbCDR gene in tobacco plants confirmed tolerance against major environmental constraints such as salinity, drought and cold, as evidenced by improved chlorophyll contents, plant morphology, plant biomass, root length, shoot length and seed germination efficiency. Transgenic lines also exhibited high accumulation of proline, total sugar, reducing sugar, free amino acid and polyphenol, besides the low level of malondialdehyde (MDA) contents. SbCDR transgenic lines showed better relative water contents, membrane stability index and osmotic water potential. Furthermore, higher expression of ROS scavenging genes was observed in transgenic lines under stress. Moreover, microarray analysis revealed that several host genes were upregulated and downregulated under drought and salt stress conditions in SbCDR transgenic line compared with control (WT) plants. The results demonstrated that the overexpression of the halophytic SbCDR gene has intense effects on the abiotic stress tolerance of transgenic tobacco plants. However, the exact mode of action of SbCDR in multiple abiotic stress tolerance of plants is yet to be unveiled. It is believed that the precise role of SbCDR gene will provide additional information to comprehend the abiotic stress tolerance mechanism. Furthermore, it will appear as a promising candidate gene for improving stress tolerance in different crop plants for sustainable agriculture and crop productivity.


Subject(s)
Droughts , Nicotiana , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Nicotiana/genetics , Nicotiana/metabolism
12.
DNA Cell Biol ; 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32865429

ABSTRACT

Cytochrome b6f complex is a thylakoid membrane-localized protein and catalyses the transfer of electrons from plastoquinol to plastocyanin in photosynthetic electron transport chain. In the present study, Cytochrome b6 (KaCyt b6) gene from Kappaphycus alvarezii (a red seaweed) was overexpressed in tobacco. A 935 base pair (bp) long KaCyt b6 cDNA contained an open reading frame of 648 bp encoding a protein of 215 amino acids with an expected isoelectric point of 8.67 and a molecular mass of 24.37 kDa. The KaCyt b6 gene was overexpressed in tobacco under control of CaMV35S promoter. The transgenic tobacco had higher electron transfer rate and photosynthetic yield over wild-type and vector control tobacco. The KaCyt b6 tobacco also exhibited significantly higher photosynthetic gas exchange (PN) and improved water use efficiency. The transgenic plants had higher ratio of PN and intercellular CO2. The KaCyt b6 transgenic tobacco showed higher estimates of photosystem II quantum yield, higher activity of the water-splitting complex, PSII photochemistry, and photochemical quenching. The basal quantum yield of nonphotochemical processes in PSII was recorded lower in KaCyt b6 tobacco. Transgenic tobacco contained higher contents of carotenoids and total chlorophyll and also had better ratios of chlorophyll a and b, and carotenoids and total chlorophyll contents hence improved photosynthetic efficiency and production of sugar and starch. The KaCyt b6 transgenic plants performed superior under control and greenhouse conditions. To the best of our knowledge through literature survey, this is the first report on characterization of KaCyt b6 gene from K. alvarezii for enhanced photosynthetic efficiency and growth in tobacco.

13.
Sci Rep ; 10(1): 6474, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32277115

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
BMC Plant Biol ; 20(1): 116, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32171251

ABSTRACT

BACKGROUND: Developing fruit is considered as an excellent model to study the complex network of metabolites which are altered rapidly during development. RESULTS: Metabolomics revealed that developing psyllium fruit is a rich source of primary metabolites (ω-3 and ω-6 fatty acids and amino-acids), secondary metabolites and natural antioxidants. Eidonomy and anatomy confirmed that psyllium fruit followed five stages of development. Total lipids and fatty acids were synthesized differentially; saturated fatty acids (FAs) increased, whereas total polyunsaturated FAs decreased with increasing developmental stage. The unsaturation index and degree of unsaturation showed a catenary curve. Principal component analysis confirmed a significant shift in the FA profile from bud initiation to the maturation stage. Similarly, a similar level of total amino acids was present at different developmental stage following a temporal biosynthesis pathway. Total phenolic and flavonoid contents decreased in tandem with fruit development. Twenty-two different metabolites were identified, and metabolic changes were also observed during fruit development. Six metabolites were detected exclusively in the flowering stage, whereas two were detected in each of early and maturity stages of development. The metabolites apigenin and kaempferol were detected ubiquitously in all developmental stages. Time-dependent metabolomics revealed a shift in metabolite biosynthesis. CONCLUSION: During fruit development, metabolites, FAs, amino acids, total phenolics, total flavonoids, antioxidants and scavenging activities changed progressively and were co-ordinately linked to each other. As a future perspective, further studies will focus on the validation of identified metabolites, which integrated with transcriptomics data and will reveal the metabolic regulatory network of development psyllium fruit.


Subject(s)
Fruit/metabolism , Metabolome , Plantago/metabolism , Fruit/growth & development , Metabolomics , Plantago/growth & development
16.
PLoS One ; 14(9): e0222405, 2019.
Article in English | MEDLINE | ID: mdl-31513643

ABSTRACT

Arachis hypogea (Peanut) is one of the most important crops, and it is harvested and used for food and oil production. Being a legume crop, the fixation of atmospheric nitrogen is achieved through symbiotic association. Nitrogen deficiency is one of the major constrains for loss of crop productivity. The bacterium Stenotrophomonas maltophilia is known for interactions with plants. In this study, characteristics that promote plant growth were explored for their ability to enhance the growth of peanut plants under N2 deficit condition. In the presence of S. maltophilia, it was observed that fatty acid composition of peanut plants was influenced and increased contents of omega-7 monounsaturated fatty acid and omega-6 fatty acid (γ-Linolenic acid) were detected. Plant growth was increased in plants co-cultivated with PGPR (Plant Growth Promoting Rhizobacteria) under normal and stress (nitrogen deficient) condition. Electrolyte leakage, lipid peroxidation, and H2O2 content reduced in plants, co-cultivated with PGPR under normal (grown in a media supplemented with N2 source; C+) or stress (nitrogen deficient N+) conditions compared to the corresponding control plants (i.e. not co-cultivated with PGPR; C-or N-). The growth hormone auxin, osmoprotectants (proline, total soluble sugars and total amino acids), total phenolic-compounds and total flavonoid content were enhanced in plants co-cultivated with PGPR. Additionally, antioxidant and free radical scavenging (DPPH, hydroxyl and H2O2) activities were increased in plants that were treated with PGPR under both normal and N2 deficit condition. Overall, these results indicate that plants co-cultivated with PGPR, S. maltophilia, increase plant growth, antioxidant levels, scavenging, and stress tolerance under N2 deficit condition. The beneficial use of bacterium S. maltophilia could be explored further as an efficient PGPR for growing agricultural crops under N2 deficit conditions. However, a detail agronomic study would be prerequisite to confirm its commercial role.


Subject(s)
Arachis/metabolism , Nitrogen/metabolism , Stenotrophomonas maltophilia/metabolism , Arachis/microbiology , Crops, Agricultural/metabolism , Nitrogen/analysis , Nitrogen/deficiency , Plant Development , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Soil/chemistry , Soil Microbiology , Stenotrophomonas maltophilia/growth & development
17.
Front Microbiol ; 10: 1269, 2019.
Article in English | MEDLINE | ID: mdl-31231348

ABSTRACT

Bacterial cell-to-cell communication promotes biofilm formation and can potentially lead to multidrug resistance development. Quorum sensing inhibition (QSI) is an effective and widely employed strategy against biofilm formation. The extract from Exiguobacterium indicum SJ16, a gram-positive bacterium, isolated from the rhizosphere of Cyperus laevigatus showed significant anti-quorum sensing activity (about 99%) against the reference Chromobacterium violaceum CV026 strain without exerting any antibacterial effect. The potentially active QSI compound identified in the SJ16 extract was 3-Benzyl-hexahydro-pyrrolo[1, 2-a]pyrazine-1,4-dione. The SJ16 extract containing this active compound showed significant anti-quorum sensing activity against a model quorum sensing bacterium strain Pseudomonas aeruginosa PAO1 and a clinical isolate P. aeruginosa PAH by preventing biofilm formation without attenuating the cell growth within the biofilm. More specifically, the SJ16 extract changed the topography and architecture of the biofilm, thus preventing bacterial adherence and further development of the biofilm. Furthermore, it decreased virulence factors (rhamnolipid and pyocyanin), the bacterial motility, as well as the elastase, and protease activities in P. aeruginosa. Microarray analysis revealed the differential expression of quorum sensing regulatory genes. Based on these results, we herein propose a hypothetical model, characterizing the role of this QSI agent in the transcriptional regulation of quorum sensing in P. aeruginosa PAO1, demonstrating that this compound has significant drug-development potential. Further research is required to delineate its possible applications in therapeutics in the context of biofilm forming bacterial infections.

18.
Int J Biol Macromol ; 133: 190-201, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30981777

ABSTRACT

Polysaccharides extracted from seeds and husk of psyllium were characterized for different physicochemical characteristics, and bioactivities. Extracted polysaccharides are comprised of d-xylose, l-arabinose, d-glucose, d-galactose, and l-rhamnose. Crude husk-polysaccharide was crystalline, whereas rest was amorphous in nature. Husk-polysaccharide was structurally stable, and purified fractions were thermostable. Crude polysaccharides were irregular in shape with non-porous smooth-surface, however purified husk-polysaccharides showed some porosity, and fibrous nature. Husk-polysaccharide showed higher viscosity compared to seed-polysaccharide, but viscosity decreased with the purification. Crude polysaccharides contained hydrogel-like behavior compared to corresponding purified fractions. The purified fractions of seed-polysaccharide showed the utmost antioxidant and scavenging activities with a half-maximal effective concentration of 347.40 ±â€¯1.79 and 362.72 ±â€¯2.75 µg, respectively. Crude seed-polysaccharide showed about 34% anti-proliferation on Huh-7, whereas its purified fractions showed 42% anti-proliferation on HeLa cell line. The study confirms that psyllium polysaccharides are potential natural antioxidant and anti-carcinogenic agent; however a detailed study is needed to explore psyllium for nutraceutical applications.


Subject(s)
Chemical Phenomena , Polysaccharides/chemistry , Polysaccharides/pharmacology , Psyllium/chemistry , Seeds/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzothiazoles/chemistry , Biphenyl Compounds/chemistry , Cell Proliferation/drug effects , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , HeLa Cells , Humans , Molecular Weight , Monosaccharides/analysis , Optical Phenomena , Particle Size , Picrates/chemistry , Sulfonic Acids/chemistry , Temperature
19.
Gene ; 701: 55-64, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30902785

ABSTRACT

The present study revealed the spatial variability of bacteria in relation to physicochemical variations at four different locations (Diu - DIU, Veraval - VER, Porbandar - POR and Okha - OKH) along the Gujarat coast (Arabian Sea, India). The natural habitat was analyzed for temperature, salinity, pH, total dissolved solids, total organic content, total inorganic content, biological oxygen demand, conductivity and total dissolved oxygen. The lowest salinity and conductivity were observed at the VER site, whereas the highest salinity and conductivity were measured with OKH samples. In contrast, the pH was slightly alkaline at all of the sites. The VER site contained the maximum total dissolved solids (TDS), total carbon (TC), total organic carbon (TOC), and total inorganic carbon (TIC), while OKH showed the maximum dissolve oxygen (DO), biological oxygen demand (BOD), pH, temperature, conductivity, and salinity. The physicochemical characteristics showed that the Gujarat coast is alkaline and has a nutrient heterogeneous nature. Average well color development (AWCD) values, calculated using Biolog EcoPlates, showed that the microbial community from VER contained the highest metabolic activities and could metabolize all 31 substrates, followed by DIU > OKH > POR samples. In contrast, the abundance of the bacterial community, determined by qRT-PCR, was maximum in VER samples, followed by OKH > POR > DIU samples. The Shannon and Simpson indices showed that DIU, POR and OKH seawater clone libraries were more diverse. Furthermore, Chao estimator revealed the high diversity of POR and DIU clone libraries. Interestingly, DIU and OKH did not share any common operational taxonomic units (OTUs), and overall, the maximum bacterial diversity was observed with the POR seawater sample. Moreover, these observations were supported by statistical analysis, such as canonical correspondence analysis (CCA) and principal component analysis (PCA). The molecular phylogeny revealed the dominance of Proteobacteria followed by Firmicutes. Within the Proteobacteria phylum, most of the sequences were affiliated with the Gammaproteobacteria class. In total, about 726 OTUs were observed from all four sites which covers 59.79% DIU, 87.5% VER, 50% POR and 98.83% OKH of samples. This study is the first report to describe physicochemical attributes and the bacterial diversity of the coastal area of Gujarat. The study will provide useful insights about bacterial diversity, distribution, and abundance, as well as their relationships with the habitat.


Subject(s)
Bacteria , Biodiversity , Microbial Consortia/physiology , Seawater/microbiology , Water Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , India , Oceans and Seas
20.
Gene ; 683: 233-242, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30340051

ABSTRACT

Salinity is one of the major abiotic stresses which affect plant growth and productivity by imposing dual stress, ionic and osmotic stress, on plants. Halophytes which are adapted to complete their life cycle in saline soil keep the transcript expression of stress-responsive genes constitutively higher in the optimum growth environments, which can be further increased by several folds under stress conditions. The transcript expression of SbNHX1 gene, cloned from a leafless succulent halophyte Salicornia brachiata, was up-regulated under salinity stress, but its transcriptional regulation has not been studied so far. In the present study, a 1727 bp putative promoter (upstream to translation start site) of the SbNHX1 gene was cloned using a genome walking method. The bioinformatics analysis identified important stress-responsive cis-regulatory motifs, GT1, MBS, LTR and ARE, in addition to two leaf-specific enhancer motifs. The GUS expression analysis of stable transgenic tobacco plants, transformed with a transcriptional fusion of GUS with the full SbNHX1 promoter (NP1) or any of its five deletion fragments (NP2 to NP6), showed that the deletion of two enhancer motifs resulted in the sudden decrease in GUS expression in leaves but not in the stem or root tissues. In contrast, under salinity stress, the higher induction of GUS expression observed in NP1 and NP2 was correlated by the presence of salt-inducible GT1- and MBS-motifs which is distributed only in NP1 and NP2 deletion promoter fragments. Finally, we concluded that the SbNHX1 promoter has a 624 bp (-1727 to -1103 bp) regulatory region which contains the two leaf-specific enhancer motifs and salinity stress-inducible GT-1 and MBS motifs. We suggest the SbNHX1 gene promoter and fragments as a candidate alternative promoter/s for crop engineering for better stress tolerance, which can be amended according to the desired level of expression needed.


Subject(s)
Chenopodiaceae/genetics , Cloning, Molecular/methods , Sodium-Hydrogen Exchangers/genetics , Up-Regulation , Gene Expression Regulation, Plant , Plant Proteins/genetics , Promoter Regions, Genetic , Salinity , Sequence Analysis, DNA , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...