Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 342: 118095, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37187075

ABSTRACT

For operational flood control and estimating ecological flow regimes in deltaic branched-river systems with limited surveyed cross-sections, accurate river stage and discharge estimation using public domain Digital Elevation Model (DEM)-extracted cross-sections are challenging. To estimate the spatiotemporal variability of streamflow and river stage in a deltaic river system using a hydrodynamic model, this study demonstrates a novel copula-based framework to obtain reliable river cross-sections from SRTM (Shuttle Radar Topographic Mission) and ASTER (Advanced Spaceborne Thermal Emission and Reflection) DEMs. Firstly, the accuracy of the CSRTM and CASTER models was assessed against the surveyed river cross-sections. Thereafter, the sensitivity of the copula-based river cross-sections was evaluated by simulating river stage and discharge using MIKE11-HD in a complex deltaic branched-river system (7000 km2) of Eastern India having a network of 19 distributaries. For this, three MIKE11-HD models were developed based on surveyed cross-sections and synthetic cross-sections (CSRTM and CASTER models). The results indicated that the developed Copula-SRTM (CSRTM) and Copula-ASTER (CASTER) models significantly reduce biases (NSE>0.8; IOA>0.9) in the DEM-derived cross-sections and hence, are capable of satisfactorily reproducing observed streamflow regimes and water levels using MIKE11-HD. The performance evaluation metrics and uncertainty analysis indicated that the MIKE11-HD model based on the surveyed cross-sections simulates with higher accuracies (streamflow regimes: NSE>0.81; water levels: NSE>0.70). The MIKE11-HD model based on the CSRTM and CASTER cross-sections, reasonably simulates streamflow regimes (CSRTM: NSE>0.74; CASTER: NSE>0.61) and water levels (CSRTM: NSE>0.54; CASTER: NSE>0.51). Conclusively, the proposed framework is a useful tool for the hydrologic community to derive synthetic river cross-sections from public domain DEMs, and simulate streamflow regimes and water levels under data-scarce conditions. This modelling framework can be easily replicated in other river systems of the world under varying topographic and hydro-climatic conditions.


Subject(s)
Hydrology , Rivers , Hydrology/methods , Floods , Uncertainty , Water
2.
Sci Total Environ ; 785: 147319, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33957597

ABSTRACT

In the 21st century, groundwater depletion is posing a serious threat to humanity throughout the world, particularly in developing nations. India being the largest consumer of groundwater in the world, dwindling groundwater storage has emerged as a serious concern in recent years. Consequently, the judicious and efficient management of vital groundwater resources is one of the grand challenges in India. Groundwater modeling is a promising tool to develop sustainable management strategies for the efficient utilization of this treasured resource. This study demonstrates a pragmatic framework for predicting seasonal groundwater levels at a large scale using real-world data. Three relatively powerful Machine Learning (ML) techniques viz., ANFIS (Adaptive Neuro-Fuzzy Inference System), Deep Neural Network (DNN) and Support Vector Machine (SVM) were employed for predicting seasonal groundwater levels at the country scale using in situ groundwater-level and pertinent meteorological data of 1996-2016. ANFIS, DNN and SVM models were developed for 18 Agro-Ecological Zones (AEZs) of India and their efficacy was evaluated using suitable statistical and graphical indicators. The findings of this study revealed that the DNN model is the most proficient in predicting seasonal groundwater levels in most AEZs, followed by the ANFIS model. However, the prediction ability of the three models is 'moderate' to 'very poor' in 3 AEZs ['Western Plain and Kutch Peninsula' in Western India, and 'Deccan Plateau (Arid)' and 'Eastern Ghats and Deccan Plateau' in Southern India]. It is recommended that groundwater-monitoring network and data acquisition systems be strengthened in India in order to ensure efficient use of modeling techniques for the sustainable management of groundwater resources.

3.
Environ Monit Assess ; 192(11): 729, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33104888

ABSTRACT

This paper examines the performance of three gridded precipitation data sets, namely, Global Precipitation Climatology Centre (GPCC), Tropical Precipitation Measuring Mission (TRMM), and the Modern-Era Retrospective Analysis for Research and Applications (MERRA), for the duration of 25 years using 9 rain gauge data sets of the Sina basin, India. Statistical measures were employed to measure the performance in reproducing the rainfall and to assess its ability to detect the rainfall/no rainfall events, its structure, pattern, and spatio-temporal variations in the monthly and annual time scales. Compromise programming (CP) is used to rank the statistical performances of selected gridded precipitation data sets and found that TRMM attained first rank for the 8 stations followed by MERRA. The precipitation concentration index (PCI) checks the pattern and distribution of rainfall and found that observed data shows a uniform distribution in the basin; however, all the three gridded data sets failed to demonstrate uniform distribution. Categorical metrics like Probability of Detection (POD) and False Alarm Ratio (FAR) revealed that TRMM followed by MERRA and GPCC have good capabilities to detect rainfall/no rainfall events at different thresholds. All the trends drawn between observed data set and gridded precipitation data sets revealed that the MERRA data tend to underestimate and the TRMM and GPCC data tend to overestimate the values and intensities of rainfall data sets at most of the stations for both monthly and annual time scales. The data analysis of extreme rainfall points at monthly and annual time scales exhibits better performance of TRMM data sets. Overall, the TRMM data set is capable in replicating different characteristics of the observed data in the study area and could be used for hydro-meteorological and climatic studies when continuous observed data set is not available.


Subject(s)
Environmental Monitoring , Meteorology , India , Rain , Retrospective Studies
4.
Sci Total Environ ; 744: 140737, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-32711306

ABSTRACT

Identification of critical erosion-prone areas and selection of best management practices (BMPs) for watersheds are necessary to control their degradation by reducing sediment yields. The current research assesses and proposes a combination of potential BMPs for the Baitarani catchment in India using the Soil and Water Assessment Tool (SWAT). After the successful calibration and validation of the SWAT model developed for this catchment, the model was applied to evaluate the efficacy of eight agricultural and structural management practices and their combinations (three scenarios) for controlling sediment yields at watershed and sub-watershed levels as well as to assess the impacts of combined BMPs on water balance components. A combination of BMPs was found more effective in reducing sediment yields than individual BMPs. Comparative evaluation revealed that structural BMPs (0.66-70%) are better than agricultural BMPs (2-7%) in minimizing sediment yields at watershed level. The costly measures like grade and streambank stabilization structures can reduce the sediment yield up to 70% at the watershed level. The modeling results of the impacts of different combinations of BMPs (three scenarios) indicated that if all the eight BMPs are implemented, the reduction of sediment yields is increased by 76% and 80% at sub-watershed and watershed levels, respectively compared to the Base Scenario. Based on funds availability, a suitable combination of BMPs can be adopted by the concerned decision-makers to effectively reduce sediment yields in the study area. Further, the simulation results of BMPs impacts on water balance components revealed that the annual average surface runoff reduces by 4-14% in the three scenarios, while aquifer recharge (6.8-8.7%), baseflow (8-10.5%), and percolation (1.2-3.9%) increase due to implementation of BMPs. Overall, the findings of this study are very useful for ensuring sustainable management of land and other resources at a catchment scale.

5.
Article in English | MEDLINE | ID: mdl-32443477

ABSTRACT

Water resources sustainability is a worldwide concern because of climate variability, growing population, and excessive groundwater exploitation in order to meet freshwater demand. Addressing these conflicting challenges sometimes can be aided by using both simulation and mathematical optimization tools. This study combines a groundwater-flow simulation model and two optimization models to develop optimal reconnaissance-level water management strategies. For a given set of hydrologic and management constraints, both of the optimization models are applied to part of the Mahanadi River basin groundwater system, which is an important source of water supply in Odisha State, India. The first optimization model employs a calibrated groundwater simulation model (MODFLOW-2005, the U.S. Geological Survey modular ground-water model) within the Simulation-Optimization MOdeling System (SOMOS) module number 1 (SOMO1) to estimate maximum permissible groundwater extraction, subject to suitable constraints that protect the aquifer from seawater intrusion. The second optimization model uses linear programming optimization to: (a) optimize conjunctive allocation of surface water and groundwater and (b) to determine a cropping pattern that maximizes net annual returns from crop yields, without causing seawater intrusion. Together, the optimization models consider the weather seasons, and the suitability and variability of existing cultivable land, crops, and the hydrogeologic system better than the models that do not employ the distributed maximum groundwater pumping rates that will not induce seawater intrusion. The optimization outcomes suggest that minimizing agricultural rice cultivation (especially during the non-monsoon season) and increasing crop diversification would improve farmers' livelihoods and aid sustainable use of water resources.


Subject(s)
Groundwater , Water Resources , Water Supply , India , Models, Theoretical , Rivers , Water
6.
Sci Rep ; 10(1): 1515, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001785

ABSTRACT

Infiltration process, which plays a paramount role in irrigation and drainage systems design, groundwater recharge and contamination evaluation, flood and drought management etc. is often controlled by several factors, among which land use/land cover (LULC) and soil physical properties are the prime factors. These factors lead to significant spatial variability of infiltration process, which poses a serious challenge for hydrologists and water managers. However, studies analyzing spatial variability and influence of both LULC and soil physical properties are scarce. To this end, grid-based infiltration experiments were carried out in a tropical sub-humid region of India to investigate spatial variability of infiltration characteristics, saturated hydraulic conductivity (Ksat) as well as to evaluate reliability of seven infiltration models in predicting infiltration behaviour and estimating Ksat. Additionally, uncertainty analysis was performed to quantify uncertainties associated with estimated Ksat for different LULC and soils. Results indicated that quasi-steady infiltration rate over the study area vary considerably with a majority of the area falling under 'low' and 'medium' infiltration categories. The infiltration process is greatly influenced by macro-pores and relatively low-permeable layers present at varying depths, typical features of lateritic vadose zones in tropical sub-humid regions, rather than its sole dependence on texture and LULC. Further, the Brutsaert model estimates Ksat with the highest accuracy and least uncertainty followed by Swartzendruber and Horton models. Except the Brutsaert model, other models are sensitive to a particular LULC. Overall, it is inferred that the Brutsaert and Swartzendruber models are robust and more reliable in predicting infiltration behavior and Ksat for the area. Findings of this study including quantification of spatial variability of important soil properties are useful for understanding detailed hydrological processes in the region and thereby, ensuring better planning and management of recurring floods and drought problems of the region.

7.
Sci Total Environ ; 649: 846-865, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30176493

ABSTRACT

Irrigation water is one of the most substantial water uses worldwide. Thus, global simulation studies about water availability and demand typically include irrigation. Nowadays, regional scale is of major interest for water resources management but irrigation lacks attention in many catchment modelling studies. This study evaluated the performance of the agro-hydrological model SWAT (Soil and Water Assessment Tool) for simulating streamflow, evapotranspiration and irrigation in four catchments of different agro-climatic zones at meso-scale (Baitarani/India: Subtropical monsoon; Ilmenau/Germany: Humid; Itata/Chile: Mediterranean; Thubon/Vietnam: Tropical). The models were calibrated well with Kling-Gupta Efficiency (KGE) varying from 0.74-0.89 and percentage bias (PBIAS) from 5.66-6.43%. The simulated irrigation is higher when irrigation is triggered by soil-water deficit compared to plant-water stress. The simulated irrigation scheduling scenarios showed that a significant amount of water can be saved by applying deficit irrigation (25-48%) with a small reduction in annual average crop yield (0-3.3%) in all climatic zones. Many catchments with a high share of irrigated agriculture are located in developing countries with a low availability of input data. For that reason, the application of uncorrected and bias-corrected National Centers for Environmental Prediction (NCEP) and ERA-interim (ERA) reanalysis data was evaluated for all model scenarios. The simulated streamflow under bias-corrected climate variables is close to the observed streamflow with ERA performing better than NCEP. However, the deviation in simulated irrigation between observed and reanalysis climate varies from -25.5-45.3%, whereas the relative irrigation water savings by deficit irrigation could be shown by all climate input data. The overall variability in simulated irrigation requirement depends mainly on the climate input data. Studies about irrigation requirement in data scarce areas must address this in particular when using reanalysis data.

8.
Environ Monit Assess ; 174(1-4): 645-63, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20461549

ABSTRACT

The growing population, pollution, and misuse of freshwater worldwide necessitate developing innovative methods and efficient strategies to protect vital groundwater resources. This need becomes more critical for arid/semi-arid regions of the world. The present study focuses on a GIS-based assessment and characterization of groundwater quality in a semi-arid hard-rock terrain of Rajasthan, western India using long-term and multi-site post-monsoon groundwater quality data. Spatio-temporal variations of water quality parameters in the study area were analyzed by GIS techniques. Groundwater quality was evaluated based on a GIS-based Groundwater Quality Index (GWQI). A Potential GWQI map was also generated for the study area following the Optimum Index Factor concept. The most-influential water quality parameters were identified by performing a map removal sensitivity analysis among the groundwater quality parameters. Mean annual concentration maps revealed that hardness is the only parameter that exceeds its maximum permissible limit for drinking water. GIS analysis revealed that sulfate and nitrate ions exhibit the highest (CV > 30%) temporal variation, but groundwater pH is stable. Hardness, EC, TDS, and magnesium govern the spatial pattern of the GWQI map. The groundwater quality of the study area is generally suitable for drinking and irrigation (median GWQI > 74). The GWQI map indicated that relatively high-quality groundwater exists in northwest and southeast portions of the study area. The groundwater quality parameter group of Ca, Cl, and pH were found to have the maximum value (6.44) of Optimum Index factor. It is concluded that Ca, Cl, and pH are three prominent parameters for cost-effective and long-term water quality monitoring in the study area. Hardness, Na, and SO(4), being the most-sensitive water quality parameters, need to be monitored regularly and more precisely.


Subject(s)
Geographic Information Systems , Water/chemistry , India
SELECTION OF CITATIONS
SEARCH DETAIL
...