Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35627063

ABSTRACT

In this study, the nanoencapsulation of catechin into the ß-glucan matrix from oats [O-Glu (C)] and barley [B-Glu (C)] was performed using the coupled approach of ultrasonication and wet milling. The nanoencapsulated catechin was characterised by particle size distribution, surface charge, SEM, and FTIR. The particle size was found to be 200 nm and 500 nm while zeta potential was found -27.13 and -24 mV for O-Glu (C) and B-Glu (C), respectively. The encapsulation efficiency of O-Glu (C) and B-Glu (C) was found to be 86.5% and 88.2%. FTIR and SEM revealed successful entrapment of catechin in ß-glucan. The encapsulated capsules showed sustainable release during simulated gastrointestinal conditions. Moreover, both O-Glu (C) and B-Glu (C) showed that biological activity such as lipase inhibition activity and antioxidant assay were retained after in vitro digestion. It was concluded that O-Glu (C) and B-Glu (C) can be used as functional ingredients effectively in food as well as in the pharmaceutical field.

2.
Ultrason Sonochem ; 86: 106006, 2022 May.
Article in English | MEDLINE | ID: mdl-35462135

ABSTRACT

Crocin (saffron bioactive) loaded protein nanoparticles were prepared from three underutilised cereal varieties viz., sorghum (SPCN), foxtail millet (FPCN) and pearl millet (PPCN) using ultrasonication technique. The particle size of crocin loaded protein complex was attained in the nano range with reduced polydispersity index and negative zeta potential. The encapsulation efficiency of crocin in protein nanoparticles was found to be 83.78% (FPCN), 78.74 % (SPCN) and 70.01% (PPCN). The topographical images of crocin loaded protein nano complex was revealed using field emission-scanning electron microscopy (FE-SEM). The attenuated total reflectance fourier transform infra-spectroscopy (ATR-FTIR) analysis showed the characteristic peaks of crocin at 956, 1700 and 3350 cm-1 in protein-crocin nanocomplex as a confirmatory test for nanoencapsulation. The antimicrobial activity of crocin loaded protein nanocomplex against three strains (Escherichia coli, Staphylococcus aureus and Fusarium oxysporium) were also evaluated. In vitro release studies showed higher content of crocin released in simulated intestinal conditions ensuring its controlled release at target site. Bioactivity (anti-cancerous and anti-hypertensive) of crocin upon in-vitro digestion were well retained indicating that protein nanoparticles can act as an effective wall material. Our results suggest that protein nanoparticles prepared in this study can act as an effective oral delivery vehicle for crocin that could be used for development of functional foods.


Subject(s)
Millets , Nanoparticles , Edible Grain , Nanoparticles/chemistry , Particle Size , Staphylococcus aureus
3.
Ultrason Sonochem ; 84: 105967, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35279632

ABSTRACT

The use of starch based nanoparticles have gained momentum in stabilizing pickering emulsions for it's numerous advantages. In present study resistant starch (RS) was isolated from lotus stem using enzymatic digestion and subjected to nanoprecipitation and ultrasonication to yield resistant starch nanoparticles (RSN). RSN of varying concentrations (2%, 10% and 20%) were used to stabilize the flax seed-oil water mixture to form pickering emulsions. The emulsions were used to nanoencapsulate ferulic acid (FA) - a well known bioactive via ultrasonication. The emulsions were lyophilized to form FA loaded lyophilized pickering emulsion (FA-LPE). The FA-LPE (2%, 10 % and 20%) were characterized using dynamic light scattering (DLS), light microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and attenuated total reflectance fourier transform infra-spectroscopy (ATR-FTIR). AFM showed FA-LPE as spherical droplets embedded in the matrix with maximum peak height of 8.47 nm and maximum pit height of 1.69 nm. SEM presented FA-LPE as an irregular and continuous surface having multiple folds and holes. The ATR-FTIR spectra of all the samples displayed peaks of C = C aromatic rings of FA at 1600 cm-1 and 1439 cm-1, signifying successful encapsulation. In vitro release assay displayed more controlled release of FA from FA-LPE (20%). Bioactivity of FA-LPE was evaluated in terms of anti-cancer, anti-diabetic, angiotensin converting enzyme (ACE) inhibition and prevention against oxidative damage under simulated gastro-intestinal conditions (SGID). The bioactivity of FA-LPE (20%) was significantly higher than FA-LPE (2%) and FA-LPE (10%). Key findings reveal that pickering emulsions can prevent FA under harsh SGID conditions and provide an approach to facilitate the design of pickering emulsions with high stability for nutraceutical delivery in food and supplement products.


Subject(s)
Nanoparticles , Resistant Starch , Coumaric Acids , Dietary Supplements , Emulsions/chemistry , Nanoparticles/chemistry , Particle Size , Starch/chemistry
4.
Ultrason Sonochem ; 76: 105655, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34225214

ABSTRACT

Resistant starch type 2 (RS) was isolated from lotus stem using enzymatic digestion method. The isolated RS was subjected to ultrasonication (US) at different sonication power (100-400 W). The US treated and untreated RS samples were characterized using dynamic light scattering (DLS), scanning electron microscopy (SEM), light microscopy and Fourier transform infrared spectroscopy (FT-IR). DLS revealed that particle size of RS decreased from 12.80 µm to 413.19 nm and zeta potential increased from -12.34 mV to -26.09 mV with the increase in sonication power. SEM revealed smaller, disintegrated and irregular shaped RS particles after ultrasonication. FT-IR showed the decreased the band intensity at 995 cm-1 and 1047 cm-1 signifying that US treatment decreased the crystallinity of RS and increased its amorphous character. The bile acid binding, anti-oxidant and pancreatic lipase inhibition activity of samples also increased significantly (p < 0.05) with the increase in sonication power. Increase in US power however increased the values of hydrolysis from 23.11 ± 1.09 to 36.06 ± 0.13% and gylcemic index from 52.39 ± 0.38 to 59.50 ± 0.11. Overall, the non-thermal process of ultrasonic treatment can be used to change the structural, morphological and nutraceutical profile of lotus stem resistant starch which can have great food and pharamaceutical applications.


Subject(s)
Lotus/chemistry , Plant Stems/chemistry , Resistant Starch/analysis , Ultrasonic Waves , Absorption, Physicochemical , Nutritive Value
5.
Sci Rep ; 11(1): 4873, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33649366

ABSTRACT

Ball milling offers green approach for size reduction of starch granules to nano scale size. In this research work, the starch from two underutilised cereal varieties viz. foxtail starch (FS) and sorghum starch (SS) were milled to achieve the desired nanometric range with mean particle diameter of 467.98 and 271.12 nm for nano foxtail (FSN) and nano sorghum starch (SSN), which were highly stable as revealed by zeta potential analysis. Functional attributes like solubility, swelling index, apparent amylose content, emulsifying and pasting properties were evaluated. Scanning electron microscopy (SEM) clearly revealed damaged starch granules produed by the process of milling. X-ray diffraction (XRD) displayed decrease in crystallinity upon milling to 16.08% (SSN) and 18.56% (FSN) and disappearance of some peaks. Attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) also revealed reduced crystallinity as confirmed by the decreased absorbance ratio of 1047/1022 cm-1 in nano starch particles. Rheological analysis displayed shear thinning behaviour of nano starch samples as evaluated using Herschel-bulkely model and Power law. The nano starch samples exhibited comparatively low thermal gelatinisation temperatures as compared to native counter particles. Moreover, the nano-encapsulated starch samples offered more resistance to in-vitro digestion and showed control release of folic acid at target sites.


Subject(s)
Amylose , Edible Grain/chemistry , Folic Acid , Gastrointestinal Tract , Nanostructures/chemistry , Amylose/chemistry , Amylose/pharmacokinetics , Amylose/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Folic Acid/chemistry , Folic Acid/pharmacokinetics , Folic Acid/pharmacology , Humans
6.
Int J Biol Macromol ; 159: 1113-1121, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32437804

ABSTRACT

Starch nanoparticles from pearl (Pe) and proso (Pr) millets were characterised for morphological, thermal, rheological and nutraceutical properties which are important parameters to be considered for predicting applicable domain of nanoparticles in food and other industrial applications. In the present study after using collision ball milling to achieve the nano-reduction, dynamic light scattering (DLS) revealed the average hydrodynamic particle diameter of 636 nm and 417 nm for nano-reduced pearl (PeN) and proso (PrN) millet starches. Further the nano-particles produced were having greater stability, as revealed by the data obtained for zeta potential. X-ray diffraction (XRD) revealed loss of crystallinity in starch granules whereas attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) showed no difference in the basic functional groups but decrease in intensity. Scanning electron microscopy (SEM) was used to elicit the changes in surface topography of starch granules upon nano-reduction. Post nano-reduction treatment various thermal transition temperatures significantly shifted to lower values. Results of anti-oxidant assays for prediction of nutraceutical potential revealed significant increase upon nano-reduction.


Subject(s)
Millets/chemistry , Nanoparticles/chemistry , Starch/chemistry , Chelating Agents/chemistry , Dietary Supplements/analysis , Free Radical Scavengers/chemistry , Hot Temperature , Phase Transition , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...