Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13400, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862596

ABSTRACT

The intended research aims to explore the convection phenomena of a hybrid nanofluid composed of gold and silver nanoparticles. This research is novel and significant because there is a lack of existing studies on the flow behavior of hybrid nanoparticles with important physical properties of blood base fluids, especially in the case of sidewall ruptured dilated arteries. The implementation of combined nanoparticles rather than unadulterated nanoparticles is one of the most crucial elements in boosting the thermal conduction of fluids. The research methodology encompasses the utilization of advanced bio-fluid dynamics software for simulating the flow of the nanofluid. The physical context elucidates the governing equations of momentum, mass, momentum, and energy in terms of partial differential equations. The results are displayed in both tabular and graphical forms to demonstrate the numerical and graphical solutions. The effect of physical parameters on velocity distribution is illustrated through graphs. Furthermore, the study's findings are unique and original, and these computational discoveries have not been published by any researcher before. The finding implies that utilizing hybrid nanoparticles as drug carriers holds great promise in mitigating the effects of blood flow, potentially enhancing drug delivery, and minimizing its impact on the body.


Subject(s)
Hemodynamics , Metal Nanoparticles , Humans , Metal Nanoparticles/chemistry , Gold/chemistry , Computer Simulation , Arteries , Silver/chemistry , Nanoparticles/chemistry , Models, Cardiovascular , Hydrodynamics
2.
Opt Quantum Electron ; 55(2): 172, 2023.
Article in English | MEDLINE | ID: mdl-36618532

ABSTRACT

The weakly nonlinear wave propagation that occurs in the presence of magnetic fields, in which energy is concentrated in a narrow band of wave-numbers in a dispersive and dissipative fluid. The main objective of this paper is to analyze the ( 2 + 1 ) - dimensional elliptic nonlinear Schrodinger equation under the influence of three different fractional operators. The generalized fractional soliton solutions and propagation of magnetohydrodynamics fluid in sort of solition will be visualized. The Conformable, ß and M-truncated fractional operator applied to classical evolution Schrodinger equation. In order to get the analytical closed form solution, one of the generalized approach new extended direct algebraic method is utilized. The fractional nonlinear elliptic Schrodinger equation is developed in three different fractional sense. The similarity transformation technique converted the controlling fractional system to ordinary differential equations. The fractional analytical solutions such as, plane solution, mixed hyperbolic solution, periodic and mixed periodic solutions, mixed trigonometric solution, trigonometric solution, shock solution, mixed shock singular solution, mixed singular solution, complex solitary shock solution, singular solution and shock wave solutions are obtained. The graphical 2-D and 3-D representation of the results is shown to express the propagation of fluid with the magnetic field by assuming the appropriate values of the involved parameters. The graphical performance of the obtained solution at various settings of parametric values and fractional order reveals new perspectives and fascinating model phenomena. The attained outcomes have significant applications and have opened up innovative development areas for research across numerous scientific fields.

3.
Materials (Basel) ; 14(18)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34576559

ABSTRACT

In this article, we explore solitary wave structures in nonlinear negative-index materials with beta and M-truncated fractional derivatives with the existence of a Bohm potential. The consideration of Bohm potential produced quantum phase behavior in electromagnetic waves. The applied technique is the New extended algebraic method. By use of this approach, acquired solutions convey various types of new families containing dark, dark-singular, dark-bright, and singular solutions of Type 1 and 2. Moreover, the constraint conditions for the presence of the obtained solutions are a side-effect of this technique. Finally, graphical structures are depicted.

SELECTION OF CITATIONS
SEARCH DETAIL
...