Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Food Sci Anim Resour ; 44(1): 178-188, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38229853

ABSTRACT

The aim of this study is to investigate whether milk fermented by Lactiplantibacillus plantarum K79, which exhibits angiotensin-converting enzyme inhibitory activity, has an effect on lowering the blood pressure of hypertensive rats and to investigate biomarker changes in their blood. Experimental group: normal group (NG, Wistar-Kyoto rats): distilled water, control group [NCG, spontaneously hypertensive rats (SHR)]: distilled water, high treatment group (HTG, SHR): 500 mg/kg/day, medium treatment group (SHR): 335 mg/kg/day, low treatment group (SHR): 170 mg/kg/day, positive control group (PCG, SHR): Enalapril, 10 mg/kg/day. The experimental animals used in this study were divided into groups composed of 8 animals. In terms of weight change, a significant difference was observed between the NG and the SHR group, but there was no significant difference between the SHR group. After 8 wk of feeding, blood pressure was lowered more significantly in the HTG (209.9±13.3 mmHg) than in the NCG (230.8±7.3 mmHg). The treatment group has an effect of lowering blood pressure by significantly suppressing blood pressure-related biomarker protein expression than NG. The results obtained can be used as an antihypertensive material in a variety of food raw materials.

2.
Front Immunol ; 14: 1098461, 2023.
Article in English | MEDLINE | ID: mdl-36936979

ABSTRACT

The SARS-CoV-2 coronavirus, which causes a respiratory disease called COVID-19, has been declared a pandemic by the World Health Organization (WHO) and is still ongoing. Vaccination is the most important strategy to end the pandemic. Several vaccines have been approved, as evidenced by the ongoing global pandemic, but the pandemic is far from over and no fully effective vaccine is yet available. One of the most critical steps in vaccine development is the selection of appropriate antigens and their proper introduction into the immune system. Therefore, in this study, we developed and evaluated two proposed vaccines composed of single and multiple SARS-CoV-2 polypeptides derived from the spike protein, namely, vaccine A and vaccine B, respectively. The polypeptides were validated by the sera of COVID-19-vaccinated individuals and/or naturally infected COVID-19 patients to shortlist the starting pool of antigens followed by in vivo vaccination to hACE2 transgenic mice. The spike multiple polypeptide vaccine (vaccine B) was more potent to reduce the pathogenesis of organs, resulting in higher protection against the SARS-CoV-2 infection.


Subject(s)
COVID-19 , Virus Diseases , Animals , Mice , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Disease Models, Animal , Mice, Transgenic , Peptides
3.
Food Chem ; 400: 134038, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36067688

ABSTRACT

Gellan gum (GG) is an anionic polysaccharide used as an additive in the food industry. However, the effect of GG on gut microbiota regulation and nonalcoholic fatty liver disease (NAFLD) has not yet been investigated. In vitro fermentation experiments have demonstrated that GG promoted the growth of probiotic strains such as Lactiplantibacillus rhamnosus and Bifidobacterium bifidum, producing metabolites beneficial to gut health. In mice, GG reduced hepatic triglyceride content, serum biomarkers, and body fat mass and weight gain induced by a high fat diet. Additionally, GG regulated the gut microbiota including Desulfovibrionales, Deferribacterales, Bacteroidales, and Lactobacillales at the order level and also promoted short-chain fatty acid production. Moreover, GG improved the expression of proteins related to hepatic inflammation and lipid metabolism. Taken together, GG ameliorated NAFLD, possibly by acting on the gut-liver axis via improving the gut health, indicating its potential as a food supplement and/or prebiotic against NAFLD.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Biomarkers/metabolism , Diet, High-Fat/adverse effects , Fatty Acids, Volatile/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Polysaccharides, Bacterial/pharmacology , Triglycerides/metabolism
4.
Cells ; 11(16)2022 08 10.
Article in English | MEDLINE | ID: mdl-36010553

ABSTRACT

Cryptorchidism, a condition in which testes fail to descend from the abdomen into the scrotum, is a risk factor for infertility and germ cell cancer. Normally, tight junctions between adjacent Sertoli cells in the testes form a blood-testes barrier that regulates spermatogenesis; however, the effect of cryptorchidism on tight junctions is not well-understood. We established a model of heat-induced testicular damage in dogs using surgical cryptorchidism. We sequenced RNA to investigate whether certain transcripts are expressed at higher rates in heat-damaged versus normally descended testes. Claudins, cell adhesion molecules, were relatively highly expressed in cryptorchid testes: claudins 2, 3, 5, 11, and 18 were significantly increased in cryptorchid testes and reduced by orchiopexy. SOX9-positive Sertoli cells were present in the seminiferous tubules in both cryptorchid and control testes. Using real-time PCR and Western blot analysis to compare Sertoli cells cultured at 34 °C and 37 °C, we found that Sertoli cell claudins 2, 3, 5, 11, and 18 were significantly increased at 37 °C; however, accumulation was higher in the G0/G1 phase in Sertoli cells cultured at 34 °C. These results indicate that testicular hyperthermia caused by cryptorchidism affects claudin expression, regulated germ cell death, and the proliferation of Sertoli cells.


Subject(s)
Cryptorchidism , Animals , Claudins/genetics , Claudins/metabolism , Cryptorchidism/genetics , Cryptorchidism/metabolism , Dogs , Humans , Male , Sertoli Cells/metabolism , Transcriptome/genetics
5.
Front Immunol ; 13: 837590, 2022.
Article in English | MEDLINE | ID: mdl-35281008

ABSTRACT

IL-32 plays a contradictory role such as tumor proliferation or suppressor in cancer development depending on the cancer type. In most cancers, it was found that the high expression of IL-32 was associated with more proliferative and progression of cancer. However, studying the isoforms of IL-32 cytokine has placed its paradoxical role into a wide range of functions based on its dominant isoform and surrounding environment. IL-32ß, for example, was found mostly in different types of cancer and associated with cancer expansion. This observation is legitimate since cancer exhibits some hypoxic environment and IL-32ß was known to be induced under hypoxic conditions. However, IL-32θ interacts directly with protein kinase C-δ reducing NF-κB and STAT3 levels to inhibit epithelial-mesenchymal transition (EMT). This effect could explain the different functions of IL-32 isoforms in cancer. However, pro- or antitumor activity which is dependant on obesity, gender, and age as it relates to IL-32 has yet to be studied. Obesity-related IL-32 regulation indicated the role of IL-32 in cancer metabolism and inflammation. IL-32-specific direction in cancer therapy is difficult to conclude. In this review, we address that the paradoxical effect of IL-32 on cancer is attributed to the dominant isoform, cancer type, tumor microenvironment, and genetic background. IL-32 seems to have a contradictory role in cancer. However, investigating multiple IL-32 isoforms could explain this doubt and bring us closer to using them in therapy.


Subject(s)
Interleukins , Neoplasms , Humans , Interleukins/genetics , NF-kappa B/metabolism , Obesity , Protein Isoforms/genetics , Tumor Microenvironment
6.
Front Immunol ; 13: 837588, 2022.
Article in English | MEDLINE | ID: mdl-35281066

ABSTRACT

Cytokines are significantly associated with the homeostasis of immune responses in health and disease. Interleukin-32 (IL-32) is a cytokine originally discovered in natural killer cell transcript 4. IL-32 with different disorders has been described in terms of pathogenesis and the progression of diseases. Clinical studies have investigated IL-32 under various conditions, such as viral infection, autoimmune diseases, inflammatory diseases, certain types of cancer, vascular disease, and pulmonary diseases. The high expression of IL-32 was identified in different tissues with various diseases and found to have multiple transcripts of up to seven isoforms. However, the purification and biological activities of these isoforms have not been investigated yet. Therefore, in this study, we purified and compared the biological activity of recombinant IL-32 (rIL-32) isoforms. This is the first time for seven rIL-32 isoforms (α, ß, δ, γ, ϵ, ζ, and θ) to be cloned and purified using an Escherichia coli expression system. Next, we evaluate the biological activities of these seven rIL-32 isoforms, which were used to treat different types of cells by assessing the levels of inflammatory cytokine production. The results revealed that rIL-32θ possessed the most dominant biological activity in both immune and non-immune cells.


Subject(s)
Interleukins , Gene Expression , Interleukins/genetics , Interleukins/metabolism , Protein Isoforms/genetics
7.
ACS Omega ; 6(49): 33511-33522, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34926900

ABSTRACT

Biodegradable cellular and acellular scaffolds have great potential to regenerate damaged tissues or organs by creating a proper extracellular matrix (ECM) capable of recruiting endogenous cells to support cellular ingrowth. However, since hydrogel-based scaffolds normally degrade through surface erosion, cell migration and ingrowth into scaffolds might be inhibited early in the implantation. This could result in insufficient de novo tissue formation in the injured area. To address these challenges, continuous and microsized strand-like networks could be incorporated into scaffolds to guide and recruit endogenous cells in rapid manner. Fabrication of such microarchitectures in scaffolds is often a laborious and time-consuming process and could compromise the structural integrity of the scaffold or impact cell viability. Here, we have developed a fast single-step approach to fabricate colloidal hydrogels, which are made up of randomly packed human serum albumin-based photo-cross-linkable microparticles with continuous internal networks of microscale voids. The human serum albumin conjugated with methacrylic groups were assembled to microsized aggregates for achieving unique porous structures inside the colloidal gels. The albumin hydrogels showed tunable mechanical properties such as elastic modulus, porosity, and biodegradability, providing a suitable ECM for various cells such as cardiomyoblasts and endothelial cells. In addition, the encapsulated cells within the hydrogel showed improved cell retention and increased survivability in vitro. Microporous structures of the colloidal gels can serve as a guide for the infiltration of host cells upon implantation, achieving rapid recruitment of hematopoietic cells and, ultimately, enhancing the tissue regeneration capacity of implanted scaffolds.

8.
Immune Netw ; 21(5): e32, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34796036

ABSTRACT

Over two hundred twenty-eight million cases of coronavirus disease 2019 (COVID-19) in the world have been reported until the 21st of September 2021 after the first rise in December 2019. The virus caused the disease called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 4 million deaths blame COVID-19 during the last one year and 8 months in the world. Currently, four SARS-CoV-2 variants of concern are mainly focused by pandemic studies with limited experiments to translate the infectivity and pathogenicity of each variant. The SARS-CoV-2 α, ß, γ, and δ variant of concern was originated from United Kingdom, South Africa, Brazil/Japan, and India, respectively. The classification of SARS-CoV-2 variant is based on the mutation in spike (S) gene on the envelop of SARS-CoV-2. This review describes four SARS-CoV-2 α, ß, γ, and δ variants of concern including SARS-CoV-2 ε, ζ, η, ι, κ, and B.1.617.3 variants of interest and alert. Recently, SARS-CoV-2 δ variant prevails over different countries that have 3 unique mutation sites: E156del/R158G in the N-terminal domain and T478K in a crucial receptor binding domain. A particular mutation in the functional domain of the S gene is probably associated with the infectivity and pathogenesis of the SARS-CoV-2 variant.

9.
Nutrients ; 13(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34578867

ABSTRACT

Dietary habits and gut microbiota play an essential role in non-alcoholic fatty liver disease (NAFLD) and related factors such as insulin resistance and de novo lipogenesis. In this study, we investigated the protective effects of Bacteroides uniformis CBA7346, isolated from the gut of healthy Koreans, on mice with high-fat diet (HFD)-induced NAFLD. Administration of B. uniformis CBA7346 reduced body and liver weight gain, serum alanine aminotransferase and aspartate aminotransferase levels, liver steatosis, and liver triglyceride levels in mice on an HFD; the strain also decreased homeostatic model assessment for insulin resistance values, as well as serum cholesterol, triglyceride, lipopolysaccharide, leptin, and adiponectin levels in mice on an HFD. Moreover, B. uniformis CBA7346 controlled fatty liver disease by attenuating steatosis and inflammation and regulating de novo lipogenesis-related proteins in mice on an HFD. Taken together, these findings suggest that B. uniformis CBA7346 ameliorates HFD-induced NAFLD by reducing insulin resistance and regulating de novo lipogenesis in obese mice.


Subject(s)
Bacteroides , Diet, High-Fat/adverse effects , Fatty Liver/prevention & control , Gastrointestinal Microbiome/physiology , Insulin Resistance/physiology , Lipogenesis/physiology , Animals , Disease Models, Animal , Fatty Liver/blood , Fatty Liver/etiology , Humans , Liver , Male , Mice , Mice, Inbred C57BL
10.
Int J Mol Sci ; 22(14)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34299173

ABSTRACT

Diabetic nephropathy (DN) is one of the most significant microvascular complications in diabetic patients. DN is the leading cause of end-stage renal disease, accounting for approximately 50% of incident cases. The current treatment options, such as optimal control of hyperglycemia and elevated blood pressure, are insufficient to prevent its progression. DN has been considered as a nonimmune, metabolic, or hemodynamic glomerular disease initiated by hyperglycemia. However, recent studies suggest that DN is an inflammatory disease, and immune cells related with innate and adaptive immunity, such as macrophage and T cells, might be involved in its development and progression. Although it has been revealed that kidney dendritic cells (DCs) accumulation in the renal tissue of human and animal models of DN require activated T cells in the kidney disease, little is known about the function of DCs in DN. In this review, we describe kidney DCs and their subsets, and the role in the pathogenesis of DN. We also suggest how to improve the kidney outcomes by modulating kidney DCs optimally in the patients with DN.


Subject(s)
Dendritic Cells/immunology , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/pathology , Lymphocyte Activation/immunology , Animals , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/pathology , Diabetic Nephropathies/etiology , Humans
11.
Ultrason Sonochem ; 76: 105620, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34119906

ABSTRACT

Although the immune enhancing effect of yeast has been widely reported, studies specifically investigating its effects on skin cancer are lacking. Therefore, this study aimed to develop a yeast extract capable of inhibiting melanoma cells using ultrasound technology, which can lyse the cell walls allowing subsequent rapid yeast extraction. To compare the extraction efficiency across different extraction methods, the total yield, as well as total glucan, α-glucan, and ß-glucan yields were measured. Ultrasound-assisted extract of yeast (UAEY) was found to effectively inhibit melanoma cell growth and proliferation as well as the expression of cyclin D1 and c-myc, in vitro. Additionally, the extract reduced melanoma tumor volume and cyclin D1 levels in BALB/c nu/nu mice. The optimal extraction conditions were 0.2 M NaOH, 3 h, 70 °C, 20 kHz, and 800 W, resulting in an increased total extraction and ß-glucan yields of 73.6% and 7.1%, respectively, compared with that achieved using a conventional chemical (0.5 M NaOH) extraction method. Taken together, the results of this study suggest that UAEY may represent an effective anti-skin cancer agent.


Subject(s)
Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Melanoma/pathology , Saccharomyces cerevisiae/chemistry , Ultrasonic Waves , Animals , Cell Proliferation/drug effects , Cell Wall/drug effects , Mice , Mice, Inbred BALB C , Skin Neoplasms/pathology , Tumor Burden/drug effects
12.
Immune Netw ; 21(1): e8, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33728101

ABSTRACT

The global crisis caused by the coronavirus disease 2019 (COVID-19) led to the most significant economic loss and human deaths after World War II. The pathogen causing this disease is a novel virus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of December 2020, there have been 80.2 million confirmed patients, and the mortality rate is known as 2.16% globally. A strategy to protect a host from SARS-CoV-2 is by suppressing intracellular viral replication or preventing viral entry. We focused on the spike glycoprotein that is responsible for the entry of SARS-CoV-2 into the host cell. Recently, the US Food and Drug Administration/EU Medicines Agency authorized a vaccine and antibody to treat COVID-19 patients by emergency use approval in the absence of long-term clinical trials. Both commercial and academic efforts to develop preventive and therapeutic agents continue all over the world. In this review, we present a perspective on current reports about the spike glycoprotein of SARS-CoV-2 as a therapeutic target.

13.
Immune Netw ; 21(6): e38, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35036025

ABSTRACT

Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (B.1.1.529) Omicron variant originated from South Africa in the middle of November 2021. SARS-CoV-2 is also called coronavirus disease 2019 (COVID-19) since SARS-CoV-2 is the causative agent of COVID-19. Several studies already suggested that the SARS-CoV-2 Omicron variant would be the fastest transmissible variant compared to the previous 10 SARS-CoV-2 variants of concern, interest, and alert. Few clinical studies reported the high transmissibility of the Omicron variant but there is insufficient time to perform actual experiments to prove it, since the spread is so fast. We analyzed the SARS-CoV-2 Omicron variant, which revealed a very high rate of mutation at amino acid residues that interact with angiostatin-converting enzyme 2. The mutation rate of COVID-19 is faster than what we prepared vaccine program, antibody therapy, lockdown, and quarantine against COVID-19 so far. Thus, it is necessary to find better strategies to overcome the current crisis of COVID-19 pandemic.

14.
Food Chem ; 343: 128395, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33268179

ABSTRACT

Radish (Raphanus sativus) greens are commonly used as a vegetable in Korea; however, their anti-obesity effect has not been reported yet. We prepared the polysaccharide fraction of radish greens (PRG) and assessed its anti-obesity activity in high fat diet (HFD)-induced obese C57BL/6J mice. Supplementation with 4 mg/kg PRG reduced weight gain and body fat percentage, and regulated serum biomarkers against HFD-induced obesity. Moreover, PRG treatment improved gut permeability by increasing tight junction protein expression and colon length shortening. HFD intake increased the proportion of Firmicutes and decreased the proportion of Bacteroidetes and Verrucomicrobia; however, PRG supplementation maintained gut microbial composition to normal diet condition. Moreover, PRG reduced HFD-induced increase of lipid metabolism-related protein expression, along with adipocyte size in white adipose tissue. These results indicated that PRG as a potential prebiotic, has anti-obesity properties by improving gut barrier function, modulating gut microbiota and regulating lipid metabolism.


Subject(s)
Obesity/prevention & control , Polysaccharides/administration & dosage , Raphanus/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Biomarkers/blood , Colon/drug effects , Colon/physiology , Diet, High-Fat , Gastrointestinal Microbiome/drug effects , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Male , Mice , Mice, Inbred C57BL , Obesity/pathology , Plant Leaves/metabolism , Plant Stems/metabolism , Polysaccharides/metabolism , Polysaccharides/pharmacology , Principal Component Analysis , Tight Junction Proteins/metabolism
15.
Immune Netw ; 20(5): e41, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33163249

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is a positive-sense single-stranded RNA (+ssRNA) that causes coronavirus disease 2019 (COVID-19). The viral genome encodes twelve genes for viral replication and infection. The third open reading frame is the spike (S) gene that encodes for the spike glycoprotein interacting with specific cell surface receptor - angiotensin converting enzyme 2 (ACE2) - on the host cell membrane. Most recent studies identified a single point mutation in S gene. A single point mutation in S gene leading to an amino acid substitution at codon 614 from an aspartic acid 614 into glycine (D614G) resulted in greater infectivity compared to the wild type SARS-CoV2. We were interested in investigating the mutation region of S gene of SARS-CoV2 from Korean COVID-19 patients. New mutation sites were found in the critical receptor binding domain (RBD) of S gene, which is adjacent to the aforementioned D614G mutation residue. This specific sequence data demonstrated the active progression of SARS-CoV2 by mutations in the RBD of S gene. The sequence information of new mutations is critical to the development of recombinant SARS-CoV2 spike antigens, which may be required to improve and advance the strategy against a wide range of possible SARS-CoV2 mutations.

16.
Eur J Nutr ; 59(8): 3779-3790, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32125529

ABSTRACT

PURPOSE: Metabolic diseases caused by high-carbohydrate and/or high-salt diets are becoming major public health concerns. However, the effects of salt on high-carbohydrate diet-induced obesity are unclear. Accordingly, in this study, we investigated the effects of high-salt intake on high-carbohydrate diet-induced obesity. METHODS: We performed a 12-week study on gut microbiota and metabolic changes in high-rice diet (HRD) or HRD supplemented with high-salt (HRS)-fed C57BL/6 J mice by 16S rRNA analysis, glucose and insulin tolerance testing, gut barrier function, western blot and histological analysis. Moreover, the effects of salt on lipid metabolism were confirmed in vitro using 3T3-L1 cells. RESULTS: High salt intake decreased HRD-induced increases in body and white adipose tissue (WAT) weight. Alternatively, HRS did not reverse the observed increases in glucose intolerance and insulin resistance. Moreover, HRD caused changes in the gut microbiota, thereby impairing gut barrier function and increasing inflammation in the liver. HRS altered HRD-induced microbial composition, however, did not ameliorate gut barrier dysfunction or hepatic inflammation. HRS diets regulated the HRD-induced increase in peroxisome proliferator-activated receptor-γ (PPAR-γ) and lipid metabolism-related protein expression. Moreover, within WAT, HRS was found to reverse the observed decrease in adiponectin and increase in PPAR-γ expression induced by HRD. In vitro, high NaCl concentration also significantly reduced 3T3-L1 cell differentiation and modulated lipid metabolism without causing cytotoxicity. CONCLUSION: These results indicate that high salt intake ameliorates metabolic changes associated with a high-rice diet, including changes in fecal microbiota composition.


Subject(s)
Gastrointestinal Microbiome , Metabolic Diseases , Animals , Diet, High-Fat/adverse effects , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S , Sodium Chloride , Sodium Chloride, Dietary/adverse effects
17.
Chin J Integr Med ; 26(9): 677-682, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31571123

ABSTRACT

OBJECTIVE: To investigate the effects of Korean Magnolia obovata crude extract (KME) on plateletderived growth factor (PDGF)-BB-induced proliferation and migration of vascular smooth muscle cells (VSMCs). METHODS: KME composition was analyzed by high-performance liquid chromatography (HPLC). VSMCs were isolated from the aorta of a Sprague-Dawley rat, incubated in serum free-Dulbecco's modified Eagle's medium in the presence or absence of KME (10, 30, 100, and 300 µg/mL), then further treated with PDGF-BB (10 ng/mL). VSMC proliferation was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and VSMC migration was determined using the Boyden chamber and scratch wound healing assays. Western blot analysis was used to detect phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (p-ERK1/2), protein kinase B (p-Akt), and stress-activated protein kinase/c-Jun NH2-terminal kinase (p-SAPK/JNK). The antimigration and proliferation effects of KME were tested using aortic sprout outgrowth. RESULTS: The HPLC analysis identified honokiol (0.45 mg/g) and magnolol (0.34 mg/g) as the major components of KME. KME (30, 100, and 300 µg/mL) significantly decreased the proliferation and migration of PDGF-BB-stimulated (10 ng/mL) VSMCs and the PDGF-BB-induced phosphorylation of EKR1/2, Akt, and SAPK/JNK (P<0.05). Furthermore, PDGF-BBinduced VSMCs treated with 300 µg/mL of KME showed reduction in aortic sprout outgrowth. CONCLUSION: KME could inhibit abnormal proliferation and migration of VSMCs by down-regulating the phosphorylation of EKR1/2 and Akt. Thus, KME might be a functional food for preventing vascular disorders.


Subject(s)
Magnolia/chemistry , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Plant Extracts/pharmacology , Animals , Aorta/cytology , Cell Movement/drug effects , Cell Proliferation/drug effects , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/physiology , Platelet-Derived Growth Factor/pharmacology , Rats , Rats, Sprague-Dawley , Republic of Korea
18.
Immune Netw ; 19(2): e8, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31089435

ABSTRACT

IL-32 exists as seven mRNA transcripts that can translate into distinct individual IL-32 variants with specific protein domains. These translated protein domains of IL-32 variants code for specific functions that allow for interaction with different molecules intracellularly or extracellularly. The longest variant is IL-32γ possessing 234 amino acid residues with all 11 protein domains, while the shortest variant is IL-32α possessing 131 amino acid residues with three of the protein domains. The first domain exists in 6 variants except IL-32δ variant, which has a distinct translation initiation codon due to mRNA splicing. The last eleventh domain is common domain for all seven IL-32 variants. Numerous studies in different fields, such as inflammation, autoimmunity, pathogen infection, and cancer biology, have claimed the specific biological activity of individual IL-32 variant despite the absence of sufficient data. There are 4 additional IL-32 variants without proper transcripts. In this review, the structural characteristics of seven IL-32 transcripts are described based on the specific protein domains.

19.
J Exerc Nutrition Biochem ; 22(2): 31-35, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-30149424

ABSTRACT

PURPOSE: Yacon, Smallanthus sonchifolius, has anti-hypertensive, anti-inflammatory, and anti-cancer potential. However, its neuroprotective and anti-neuroinflammatory effects are unknown. Moreover, activation of microglia has been considered a mechanism in the development of Alzheimer's disease. Therefore, the aim of this study was to determine the neuroprotective effects of an ethanolic yacon leaf extract (YLE) on lipopolysaccharide (LPS)-induced neuroinflammation in vitro and in vivo. METHODS: The viability of microglial BV2 cells was tested with 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolim-5-carboxanilide. The production of nitric oxide (NO) was determined by the Griess reagent. mRNA expression and protein levels of inflammatory mediators were evaluated by the real-time polymerase chain reaction and immunohistochemistry, respectively. In addition, we performed histological analysis in mice treated with an intraperitoneal injection of LPS (250 µg/kg). RESULTS: Our results showed that treatment with YLE significantly reduced NO production in LPS-stimulated BV2 cells. YLE also decreased mRNA levels of the inflammatory factors tumor necrosis factor alpha, inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1 beta. In vivo, YLE (40 mg/kg daily for seven days) significantly diminished LPS-induced tissue damage in the dentate gyrus and cornu amonis regions of the hippocampus by regulating the levels of inflammatory factors. CONCLUSION: Our findings support the protective effects of YLE against the development of neurodegeneration.

20.
Immune Netw ; 18(3): e19, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29984037

ABSTRACT

Virus-like particles (VLPs) derived from human papillomavirus (HPV) L1 capsid proteins were used for HPV quadrivalent recombinant vaccine. The HPV quadrivalent vaccine is administrated in a 3-dose regimen of initial injection followed by subsequent doses at 2 and 6 months to prevent cervical cancer, vulvar, and vaginal cancers. The type 6, 11, 16, or 18 of HPV infection is associated with precancerous lesions and genital warts in adolescents and young women. The HPV vaccine is composed of viral L1 capsid proteins are produced in eukaryotic expression systems and purified in the form of VLPs. Four different the L1 protein of 3 different subtypes of HPV: HPV11, HPV16, and HPV18 were expressed in Escherichia coli divided into 2 fragments as N- and C-terminal of each protein in order to examine the efficacy of HPV vaccine. Vaccinated sera failed to recognize N-terminal L1 HPV type 16 and type 18 by western blot while they detected N-terminal L1 protein of HPV type 11. Moreover, the recombinant C-terminal L1 proteins of type 16 was non-specifically recognized by the secondary antibody conjugated with horseradish peroxidase. This expression and purification system may provide simple method to obtain robust recombinant L1 protein of HPV subtypes to improve biochemical analysis of antigens with immunized sera.

SELECTION OF CITATIONS
SEARCH DETAIL
...