Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 23(4): 307, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35340870

ABSTRACT

Due to challenges in diagnosing myasthenia gravis (MG), identifying novel diagnostic biomarkers for this disease is essential. Mitochondria are key organelles that regulate multiple physiological functions, such as energy production, cell proliferation and cell death. In the present study, Mfn1/2, Opa1, Drp1, Fis1, AMPK, PGC-1α, NRF-1 and TFAM were compared between patients with MG and healthy subjects to identify potential diagnostic biomarkers for MG. Blood samples were collected from 50 patients with MG and 50 healthy subjects. The participants' demographic information and routine blood test results were recorded. Mitochondrial dynamics were evaluated and levels of Mfn1/2, Opa1, Drp1, Fis1, AMPK, PGC-1α, NRF-1 and TFAM were determined in peripheral blood mononuclear cells using western blotting and reverse transcription-quantitative PCR, respectively. Receiver operating characteristic curve analysis was used to evaluate the diagnostic accuracy of these indicators. The areas under the curve values of Mfn1/2, Opa1, Drp1, Fis1,AMPK, PGC-1α, NRF-1 and TFAM were 0.5408-0.8696. Compared with control subjects, mRNA expression levels of Mfn1/2, Opa1, AMPK, PGC-1α, NRF-1 and TFAM were lower, while those of Drp1 and Fis1 were higher in patients with MG. The protein expression levels of all these molecules were lower in patients with MG than in control subjects. These results suggested that mitochondrial dynamics and biogenesis indicators may be diagnostic biomarkers for MG.

2.
Exp Ther Med ; 22(1): 702, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34007311

ABSTRACT

Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disease that is characterized by muscle weakness and fatigue. Traditional treatments for MG target the neuromuscular junction (NMJ) or the immune system. However, the efficacy of such treatments is limited, and novel therapeutic options for MG are urgently required. In the current review, a new therapeutic strategy is proposed based on the mitochondrial biogenesis and energy metabolism pathway, as stimulating mitochondrial biogenesis and the energy metabolism might alleviate myasthenia gravis. A number of cellular sensors of the energy metabolism were investigated, including AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). AMPK and SIRT1 are sensors that regulate cellular energy homeostasis and maintain energy metabolism by balancing anabolism and catabolism. Peroxisome proliferator-activated receptor γ coactivator 1α and its downstream transcription factors nuclear respiratory factors 1, nuclear respiratory factors 2, and transcription factor A are key sensors of mitochondrial biogenesis, which can restore mitochondrial DNA and produce new mitochondria. These processes help to control muscle contraction and relieve the symptoms of MG, including muscle weakness caused by dysfunctional NMJ transmission. Therefore, the present review provides evidence for the therapeutic potential of targeting mitochondrial biogenesis for the treatment of MG.

3.
Oxid Med Cell Longev ; 2021: 6660616, 2021.
Article in English | MEDLINE | ID: mdl-33936383

ABSTRACT

Oxidative stress can cause the excessive generation of reactive oxygen species (ROS) and has various adverse effects on muscular mitochondria. Qiangji Jianli decoction (QJJLD) is an effective traditional Chinese medicine (TCM) that is widely applied to improve muscle weakness, and it has active constituents that prevent mitochondrial dysfunction. To investigate the protective mechanism of QJJLD against hydrogen peroxide- (H2O2-) mediated mitochondrial dysfunction in L6 myoblasts. Cell viability was determined with MTT assay. Mitochondrial ultrastructure was detected by transmission electron microscope (TEM). ROS and mitochondrial membrane potential (MMP) were analyzed by fluorescence microscope and flow cytometry. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity, and malondialdehyde (MDA) level were determined by WST-1, TBA, and DTNB methods, respectively. The mRNA and protein levels were measured by quantitative real-time PCR (qRT-PCR) and Western blot. The cell viability was decreased, and the cellular ROS level was increased when L6 myoblasts were exposed to H2O2. After treatment with QJJLD-containing serum, the SOD and GSH-Px activities were increased. MDA level was decreased concurrently. ROS level was decreased while respiratory chain complex activity and ATP content were increased in L6 myoblasts. MMP loss was attenuated. Mitochondrial ultrastructure was also improved. Simultaneously, the protein expressions of p-AMPK, PGC-1α, NRF1, and TFAM were upregulated. The mRNA and protein expressions of Mfn1/2 and Opa1 were also upregulated while Drp1 and Fis1 were downregulated. These results suggest that QJJLD may alleviate mitochondrial dysfunction through the regulation of mitochondrial dynamics and biogenesis, the inhibition of ROS generation, and the promotion of mitochondrial energy metabolism.


Subject(s)
Antigens, Surface/metabolism , DNA, Mitochondrial/adverse effects , Drugs, Chinese Herbal/therapeutic use , Hydrogen Peroxide/adverse effects , Neoplasm Proteins/metabolism , Animals , Drugs, Chinese Herbal/pharmacology , Humans , Mitochondrial Dynamics/drug effects , Myoblasts/metabolism , Organelle Biogenesis , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...