Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Healthc Eng ; 2021: 9922876, 2021.
Article in English | MEDLINE | ID: mdl-34249298

ABSTRACT

Mobile edge computing (MEC) is an emerging technology that provides cloud services at the edge of network to enable latency-critical and resource-intensive E-healthcare applications. User mobility is common in MEC. User mobility can result in an interruption of ongoing edge services and a dramatic drop in quality of service. Service migration has a great potential to address the issues and brings inevitable cost for the system. In this paper, we propose a service migration solution based on migration zone and formulate service migration cost with a comprehensive model that captures the key challenges. Then, we formulate service migration problem into Markov decision process to obtain optimal service migration policies that decide where to migrate in a limited area. We propose three algorithms to resolve the optimization problem given by the formulated model. Finally, we demonstrate the performance of our proposed algorithms by carrying out extensive experiments. We show that the proposed service migration approach reduces the total cost by up to 3 times compared to no migration and outperforms the general solution in terms of the total expected reward.


Subject(s)
Cloud Computing , Telemedicine , Algorithms , Humans , Public Policy
2.
Sensors (Basel) ; 21(5)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804316

ABSTRACT

Accurate rainfall observation data with high temporal and spatial resolution are essential for national disaster prevention and mitigation as well as climate response decisions. This paper introduces a field experiment using an E-band millimeter-wave link to obtain rainfall rate information in Nanjing city, which is situated in the east of China. The link is 3 km long and operates at 71 and 81 GHz. We first distinguish between the wet and the dry periods, and then determine the classification threshold for calculating attenuation baseline in real time. We correct the influence of the wet antenna attenuation and finally calculate the rainfall rate through the power law relationship between the rainfall rate and the rain-induced attenuation. The experimental results show that the correlation between the rainfall rate retrieved from the 71 GHz link and the rainfall rate measured by the raindrop spectrometer is up to 0.9. The correlation at 81 GHz is up to 0.91. The mean relative errors are all below 5%. By comparing with the rainfall rate measured by the laser raindrop spectrometer set up at the experimental site, we verified the reliability and accuracy of monitoring rainfall using the E-band millimeter-wave link.

3.
Sensors (Basel) ; 20(5)2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32121445

ABSTRACT

The proper utilization of road information can improve the performance of relay-node selection methods. However, the existing schemes are only applicable to a specific road structure, and this limits their application in real-world scenarios where mostly more than one road structure exists in the Region of Interest (RoI), even in the communication range of a sender. In this paper, we propose an adaptive relay-node selection (ARNS) method based on the exponential partition to implement message broadcasting in complex scenarios. First, we improved a relay-node selection method in the curved road scenarios through the re-definition of the optimal position considering the distribution of the obstacles. Then, we proposed a criterion of classifying road structures based on their broadcast characteristics. Finally, ARNS is designed to adaptively apply the appropriate relay-node selection method based on the exponential partition in realistic scenarios. Simulation results on a real-world map show that the end-to-end broadcast delay of ARNS is reduced by at least 13.8% compared to the beacon-based relay-node selection method, and at least 14.0% compared to the trinary partitioned black-burst-based broadcast protocol (3P3B)-based relay-node selection method. The broadcast coverage is increased by 3.6-7% in curved road scenarios, with obstacles benefitting from the consideration of the distribution of obstacles. Moreover, ARNS achieves a higher and more stable packet delivery ratio (PDR) than existing methods profiting from the adaptive selection mechanism.

4.
Sensors (Basel) ; 19(19)2019 Sep 29.
Article in English | MEDLINE | ID: mdl-31569568

ABSTRACT

Wireless body area networks will inevitably bring tremendous convenience to human society in future development, and also enable people to benefit from ubiquitous technological services. However, one of the reasons hindering development is the limited energy of the network nodes. Therefore, the energy consumption in the selection of the next hop must be minimized in multi-hop routing. To solve this problem, this paper proposes an energy efficient routing protocol for reliable data transmission in a wireless body area network. The protocol takes multiple parameters of the network node into account, such as residual energy, transmission efficiency, available bandwidth, and the number of hops to the sink. We construct the maximum benefit function to select the next hop node by normalizing the node parameters, and dynamically select the node with the largest function value as the next hop node. Based on the above work, the proposed method can achieve efficient multi-hop routing transmission of data and improve the reliability of network data transmission. Compared with the priority-based energy-efficient routing algorithm (PERA) and modified new-attempt routing protocol (NEW-ATTEMPT), the simulation results show that the proposed routing protocol uses the maximum benefit function to select the next hop node dynamically, which not only improves the reliability of data transmission, but also significantly improves the energy utilization efficiency of the node and prolongs the network lifetime.


Subject(s)
Algorithms , Monitoring, Physiologic/methods , Wireless Technology , Human Body , Humans , Information Storage and Retrieval
5.
Sensors (Basel) ; 19(7)2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30959817

ABSTRACT

The emergence of wireless body area network (WBAN) technology has brought hope and dawn to solve the problems of population aging, various chronic diseases, and medical facility shortage. The increasing demand for real-time applications in such networks, stimulates many research activities. Designing such a scheme of critical events while preserving the energy efficiency is a challenging task, due to the dynamic of the network topology, severe constraints on the power supply, and the limited computation power. The design of routing protocols becomes an essential part of WBANs and plays an important role in the communication stacks and has a significant impact on the network performance. In this paper, we briefly introduce WBAN and focus on the analysis of the routing protocol, classify, and compare the advantages and disadvantages of various routing protocols. Lastly, we put forward some problems and suggestions, which provides ideas for the follow-up routing design.


Subject(s)
Delivery of Health Care/methods , Wireless Technology , Algorithms , Computer Communication Networks
6.
Sensors (Basel) ; 18(12)2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30513980

ABSTRACT

Employment of a relay node can extend the coverage of a message in vehicular networks (VNET). In addition, the prior information regarding the road structure, which determines the structure of VNET, can benefit relay-node selection. However, the non-line-of-sight (NLOS) communication in the intersection scenarios and diverse shapes for the intersection hamper the design of a general relay-node selection on intersection. To resolve this problem, in this paper, we build a model to describe the general intersection, and propose a general relay-node selection method on intersection. Additionally, based on our mathematical description of the general intersection, the performance models for the general relay-node selection on the intersection are first explored in terms of message dissemination speed and Packet Delivery Ratio (PDR). The simulation results validate these models and indicate the improvement of our proposal, especially in heavy traffic. The improvement includes, at the high density of 3.0025 vehicles/m, the huge gain of up to 23.35% in terms of message dissemination speed than that of other compared methods and PDR of over 90%.

7.
Sensors (Basel) ; 18(10)2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30274382

ABSTRACT

Vehicle to everything (V2X) has been deemed a promising technology due to its potential to achieve traffic safety and efficiency. This paper considers a V2X downlink system with a simultaneous wireless information and power transfer (SWIPT) system where the base station not only conveys data and energy to two types of wireless vehicular receivers, such as one hybrid power-splitting vehicular receiver, and multiple energy vehicular receivers, but also prevents information from being intercepted by the potential eavesdroppers (idle energy vehicular receivers). Both the base station and the energy vehicular receivers are equipped with multiple antennas, whereas the information vehicular receiver is equipped with a single antenna. In particular, the imperfect channel state information (CSI) and the practical nonlinear energy harvesting (EH) model are taken into account. The non-convex optimization problem is formulated to maximize the minimum harvested energy power among the energy vehicular receivers satisfying the lowest harvested energy power threshold at the information vehicular receiver and secure vehicular communication requirements. In light of the intractability of the optimization problem, the semidefinite relaxation (SDR) technique and variable substitutions are applied, and the optimal solution is proven to be tight. A number of results demonstrate that the proposed robust secure beamforming scheme has better performance than other schemes.

8.
Sensors (Basel) ; 17(10)2017 Sep 22.
Article in English | MEDLINE | ID: mdl-28937629

ABSTRACT

The key to successful maneuvering complex extended object tracking (MCEOT) using range extent measurements provided by high resolution sensors lies in accurate and effective modeling of both the extension dynamics and the centroid kinematics. During object maneuvers, the extension dynamics of an object with a complex shape is highly coupled with the centroid kinematics. However, this difficult but important problem is rarely considered and solved explicitly. In view of this, this paper proposes a general approach to modeling a maneuvering complex extended object based on Minkowski sum, so that the coupled turn maneuvers in both the centroid states and extensions can be described accurately. The new model has a concise and unified form, in which the complex extension dynamics can be simply and jointly characterized by multiple simple sub-objects' extension dynamics based on Minkowski sum. The proposed maneuvering model fits range extent measurements very well due to its favorable properties. Based on this model, an MCEOT algorithm dealing with motion and extension maneuvers is also derived. Two different cases of the turn maneuvers with known/unknown turn rates are specifically considered. The proposed algorithm which jointly estimates the kinematic state and the object extension can also be easily implemented. Simulation results demonstrate the effectiveness of the proposed modeling and tracking approaches.

9.
Chem Commun (Camb) ; (15): 2038-40, 2009 Apr 21.
Article in English | MEDLINE | ID: mdl-19333483

ABSTRACT

A highly efficient catalyst, MoV(0.3)Te(0.17)Nb(0.12)O, used for acrylic acid (AA) production from propane, was used as an anodic catalyst in an SOFC reactor, from which AA and electric power were cogenerated at 400-450 degrees C.

10.
J Inorg Biochem ; 98(6): 917-24, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15149797

ABSTRACT

The chelate ligand 2,9-di(6'-alpha-phenol-n-2',5'-diazahexyl)-1,10-phenanthroline (L) was synthesized and fully characterized. This ligand formed six protonated species in the solution. The bindings of the ligand to the nucleotide anions ATP, ADP and AMP were described in detail, with equilibrium constants given for each species formed. The strength of binding increased with the number of protons, corresponding to an increase in the number of hydrogen bonds and an increase in the coulombic attractive forces. At the same time, the coordination properties of the ternary complexes formed from the chelate ligand above, M (M=Zn(2+), Cd(2+)) and adenosine-5'-triphosphate (ATP) were studied. The metal complexes of the chelate recognize the nucleotides via multiple interactions similar to those occurring in the center of enzymes. The hydrolysis of ATP was studied with the mononuclear and trinuclear chelate complexes.


Subject(s)
Adenosine Triphosphate/chemistry , Cadmium/chemistry , Phenanthrolines/chemistry , Phosphoric Acids/chemistry , Zinc/chemistry , Catalysis , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Ligands , Phenanthrolines/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...