Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 272(Pt 1): 132635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797295

ABSTRACT

Lignin, as a natural polyphenol, displays anti-oxidant activity by trapping and binding free radicals through its free phenolic hydroxyl groups. However, the most accessible form, industrial lignins, generally has low phenolic hydroxyl content, which severely limits their application value and scenarios. Herein, we showed that potassium-glycerate deep eutectic solvent (PG-DES) treatment can be combined with laccase oxidation to afford prepared high antioxidant lignin nanoparticles (HA-LNPs) with notably improved anti-oxidant activities benefiting from both the enhanced phenolic hydroxyl content 170.8 % and reduced average particle size (59.0 nm). At concentrations as low as 60 µg/mL, HA-LNPs showed favorable effects in promoting collagen formation. When HA-LNPs were used as an active ingredient in the anti-aging mask formulation, the reactive oxygen species (ROS) scavenging activity of mask samples containing 0.4 % HA-LNPs reached 37.2 %. The data suggest great promise of HA-LNPs as a natural antioxidant for formulating in anti-aging skin care products.


Subject(s)
Antioxidants , Cosmetics , Lignin , Nanoparticles , Antioxidants/chemistry , Antioxidants/pharmacology , Cosmetics/chemistry , Nanoparticles/chemistry , Lignin/chemistry , Lignin/pharmacology , Reactive Oxygen Species/metabolism , Laccase/chemistry , Laccase/metabolism , Oxidation-Reduction/drug effects , Particle Size
2.
ACS Appl Mater Interfaces ; 15(46): 54085-54097, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37939228

ABSTRACT

Smart textiles demonstrating optical responses to external light stimuli hold great promise as functional materials with a wide range of applications in personalized decoration and information visualization. The incorporation of high-contrast, vivid, and real-time optical signals, such as color change or fluorescence emission, to indicate light on/off states is both crucial and challenging. In this study, we have developed a dual output photosensitive dye system possessing photochromic and photofluorescent properties, which was successfully applied to the dyeing and finishing processes of cotton fabrics. The design and fabrication of this dye system were based on the unique photoinduced proton transfer (PPT) principle exhibited by the water-soluble spiropyran (trans-MCH) molecule. The dual output response relies on the open-/closed-loop mechanism, wherein light regulates the trans-MCH molecule. Upon excitation by UV or visible light, the dye system and dyed fabrics display significant color changes and fluorescence switching in a real-time and highly reversible manner. Moreover, diverse photosensitive color systems can be tailored by direct blending with commercially available water-soluble dyes. By integrating high-contrast dual optical outputs into this scalable, versatile, and reversible dye system, we envisage the development and design of smart textiles capable of producing high-end products.

3.
J Hazard Mater ; 435: 128982, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35472536

ABSTRACT

Flavin mononucleotide (FMN) produces photo-induced reactive oxygen species (ROS), making it a bio-based and sustainable photosensitizer for micropollutant degradation. However, the rapid self-degradation of FMN under light poses challenges in practical applications. We propose for the first time to use porous organic polymer (POP) structures as particles and in situ grown on nanofibrous membranes to capture the ribityl side chain ("tail") of FMN by electrostatic-driven guest-host interaction. By restraining the free bending mode of FMN in POP, its self-degradation is highly inhibited, showing a prolonged half-life (102.7 and 79.7 times to that in solution and in ß-cyclodextrin, respectively) without any impact on the ROS production even after 16 h of UVA irradiation. As a proof-of-concept, the photocatalytic degradation efficiency of FMN-POP complexes can be achieved at 58-93% against micropollutants under UVA. The stabilization of FMN by the "tail" capture in the POP allows its photocatalytic degradation function to be continuously online.


Subject(s)
Flavin Mononucleotide , Polymers , Flavin Mononucleotide/chemistry , Flavin Mononucleotide/metabolism , Flavin Mononucleotide/pharmacology , Photosensitizing Agents , Porosity , Reactive Oxygen Species/metabolism
4.
ACS Omega ; 6(42): 28394-28402, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34723036

ABSTRACT

The modification of cellulose with polycarboxylic acid is an important technology to functionalize the substrate. 1,2,3,4-Butanetetracarboxylic acid (BTCA) can significantly improve the anti-wrinkle performance of treated cotton fabrics by cross-linking with cellulose. However, the reaction site of BTCA carboxyl and the cellulose hydroxyl has not yet been clarified, which hinders the in-depth understanding about the reaction mechanism and the development of new cross-linking reagents. This study combines Fourier transform infrared and two-dimensional correlation spectroscopy to try to make it clear. Results confirmed that BTCA anhydride is an active intermediate (corresponding to the generally accepted theory) to esterify with cellulose hydroxyl, especially the O(6)-H(6) and O(2)-H(2). Cellobiose was taken as a model of cellulose to react with BTCA at variable temperatures, proving the above conclusion. In addition, the C14- or C11-containing carboxyl of BTCA showed a higher reactivity. Based on calculating reaction kinetics and thermodynamics with Gaussian 09W software, the most likely reaction route between BTCA and cellulose was as follows: BTCA → BTCA C5C14 anhydride → C14O15 ester → C14O15 ester C31C34 anhydride → C14O15C33O ester.

5.
Mater Adv ; 2(11): 3569-3578, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-34179787

ABSTRACT

The aggregation-caused self-quenching of photosensitizers (PS), especially on a solid substrate, has highly limited their photo-induced biocidal efficiency in practical applications. Here, we designed a unique "posture" of rose Bengal (RB) on cotton-based super-adsorptive fibrous equipment, with RB being separately captured in the mesopores of porous organic polymers (POPs). The resultant daylight-induced biocidal cotton fabric with enhanced efficiency was named as DBwEE-Cotton. The enhanced biocidal activity of the DBwEE-Cotton was achieved based on two mechanisms: (1) the separation of RB in mesopores on the fabric avoids the aggregation-caused self-quenching; and (2) other than singlet oxygen generation, RB is forced to undergo type I photoreaction by surrounding the RB with massive amounts of good hydrogen donors (i.e., POP) under daylight irradiation. Given the enhanced production efficiency of reactive oxygen species by the DBwEE-Cotton, 99.9999% of E. coli and L. innocua bacteria were killed within 20 min of daylight exposure. The DBwEE-Cotton also presents excellent wash and light durability with no biocidal function loss. The development of DBwEE-Cotton provides a facile strategy of avoiding aggregation-caused self-quenching and modulating photoreactions of PS on a flexible substrate, which may guide the design of novel personal protective equipment (PPE) integrated with improved biocidal efficiency, wearability, and repeated and long-term applicability for protecting people from lethal infectious diseases.

6.
Polymers (Basel) ; 11(12)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842322

ABSTRACT

Cotton fabrics are prone to wrinkles and can be treated with citric acid (CA) to obtain good anti-wrinkle properties. However, the yellowing of the CA-treated fabrics is one big obstacle to the practical application of citric acid. The changing sequence order of CA anhydride and unsaturated acid (the reason for yellowing), such as aconitic acid (AA), has not been investigated. Herein, Fourier transform infrared (FTIR) spectroscopy, two-dimensional correlation spectroscopy (2Dcos), and Gaussian calculation were employed to characterize the reaction mechanism between CA with cellulose. FTIR spectra of the CA-treated fabrics heated under different temperatures were collected and further analyzed with 2Dcos. The results indicated the changing sequence order: 1656 cm-1→1784 cm-1→1701 cm-1, ("→" means earlier than), i.e., unsaturated acid→anhydride→ester. Moreover, a change of Gibbs free energy (ΔG) showed that trans-AA (ΔG = -22.10 kJ/mol) is more thermodynamically favorable to be formed than CA anhydride 1 (ΔG = -0.90 kJ/mol), which was proved by Gaussian computational modeling. By taking cellobiose as a model of cellulose, the ΔG results proved that O(6)-H(6) on the glucose ring is the most likely hydroxyl to react with anhydride originated from CA or AA, especially with the terminal carbonyl group.

7.
Carbohydr Polym ; 207: 288-296, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30600011

ABSTRACT

The sodium l-glutamate is reported as an efficient catalyst for the cross-linking between 1,2,3,4-butanetetracarboxylic acid (BTCA) and cellulose. Results presented ester absorbance of the treated fabrics strongly increased in the presence of the homemade l-glutamate salt, a mixture of l-glutamic acid (LGA) and NaOH at a specific ratio. Importantly, anti-wrinkle properties of the treated fabrics were significantly improved. Based on the relative concentration calculation, l-glutamate promoted the reaction of BTCA with cellulose by accelerating the formation of BTCA anhydrides and the esterification of anhydrides with cellulose. Besides, the improved anti-wrinkle property was partially attributed to the fact that the generated LGA reacted with cellulose and formed ionic cross-linking networks through amino groups with carboxyl groups in BTCA, which was confirmed by the Fourier transform infrared spectra and the computational calculations. Through detailed comparisons, l-glutamate catalyzed fabrics showed as good durability as sodium hypophosphite, indicating a possible alternative for phosphorus-containing catalysts.

8.
Carbohydr Polym ; 181: 292-299, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29253975

ABSTRACT

1,2,3,4-Butanetetracarboxylic acid (BTCA) can efficiently esterify cellulose with pyrophosphoric acid (PPA) as a catalyst to remove protons of reaction intermediates. However, valence and relative concentration ratio (RCR) of catalyst anions correlating to pH of finishing bath played a critical role in the reactions. Results here indicated that wrinkle recovery angle, tensile strength retention and ester absorbance of fabrics treated at pH of 2.8 showed higher values. It was a competing reaction for BTCA molecules to esterify or depolymerize cellulose. Importantly, divalent PPA anions were more efficient than monovalent ones in catalyzing the esterification between anhydrides and cellulose, which was confirmed by FTIR results and two-dimensional correlation spectroscopy analyses and by the RCRs of PPA anions and their changing rates versus pH. Furthermore, the higher catalytic efficiency of divalent anions was proved by the selected model catalysts. Meaningfully, the fabrics treated at pH≤3.2 presented good durability.

9.
Carbohydr Polym ; 147: 139-145, 2016 Aug 20.
Article in English | MEDLINE | ID: mdl-27178918

ABSTRACT

Polycarboxylic acids have been employed as formaldehyde-free crosslinking agents in anti-wrinkle treatment for cotton fabrics. Cotton fabrics treated by citric acid (CA) catalyzed with effective catalysts have shown satisfactory anti-wrinkle properties. Meanwhile, CA is a natural-based and environmental friendly compound. However, the yellowing of CA treated fabrics is a stumbling block for its practical application. Due to the fact that CA firstly forms aconitic acid (AA) before forming anhydrides, the cause of the yellowing, hydrogen peroxide (H2O2) bleaching was adopted to treat the CA treated fabrics in order to break the CC bond structure and reduce the yellow color but retaining the desired anti-wrinkle properties. Thermogravimetric analysis and Fourier transformed infrared spectroscopy were employed to investigate the reactions. The results revealed that the H2O2 bleaching can effectively improve the whiteness and also maintain a good anti-wrinkle performance of the CA treated fabrics under an appropriate bleaching temperature and time.

10.
Carbohydr Polym ; 144: 282-8, 2016 Jun 25.
Article in English | MEDLINE | ID: mdl-27083819

ABSTRACT

1,2,3,4-Butanetetracarboxylic acid (BTCA) imparts good anti-wrinkle property to cotton fabrics and results in significant strength loss due to cross-linking and acid degradation of cellulose simultaneously. However, benzophenone-3,3',4,4'- tetracarboxylic acid (BPTCA), an aromatic acid, crosslinks cellulose effectively but causes less strength loss to the products under similar conditions. The difference in damages to cellulose fibers was analyzed by using diffusibility and corresponding affinity of the acids to cellulose fibers, which were estimated by their molecular sizes and Hansen solubility parameters (HSP). Both experimental results and theoretical speculations revealed consistent agreement, indicating that smaller acid molecules could diffuse into cellulose fiber more rapidly and deeply, resulting in more acid degradation. Besides, the aliphatic acid such as BTCA has higher molecular affinity than BPTCA to cellulose, causing additional more degradation of cellulose. Both factors are potential reasons of the observed more severe tensile strength loss of the BTCA treated cotton fabrics.


Subject(s)
Butanes/chemistry , Carboxylic Acids/chemistry , Cellulose/chemistry , Cotton Fiber , Mechanical Phenomena , Diffusion , Software , Solubility
11.
Carbohydr Polym ; 135: 86-93, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26453855

ABSTRACT

Maleic acid (MA) has been explored to replace formaldehyde-based dimethylol dihydroxy ethylene urea (DMDHEU) for cotton anti-crease finishing. However, the resilience of treated fabrics was not satisfactorily improved. In this study, acryloyl malic acid (AMA) was synthesized and applied on fabrics as a novel crosslinking agent. The results showed that both crease recovery angle and whiteness index of treated samples were higher than those of MA in the presence/absence of catalyst sodium hypophosphite (SHP). Chemical structure of AMA was confirmed by NMR and MS spectra. The possible crosslinking mechanism between AMA and cellulose was investigated by means of (13)C NMR, MS, FTIR and phosphorus content analyses. It was found that AMA could form ester bonds with cellulose by formation of anhydride intermediate. Meanwhile, additional reaction of double bonds on AMA with another molecule or PH of SHP residual has also contributed to the crosslinking. A reaction equation was proposed based on the analyses.

12.
Carbohydr Polym ; 132: 228-36, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26256345

ABSTRACT

1,2,3,4-Butanetetracarboxylic acid (BTCA) reacts with cellulose in two steps with catalysis of alkaline salts such as sodium hypophosphite: anhydride formation and esterification of anhydride with cellulose. The alkali metal ions were found effective in catalyzing formation of BTCA anhydride in a previous report. In this work, catalytic functions of the alkaline salts in the esterification reaction between BTCA anhydride and cellulose were investigated. Results revealed that acid anions play an important role in the esterification reaction by assisting removal of protons on intermediates and completion of the esterification between cellulose and BTCA. Besides, alkaline salts with lower pKa1 values of the corresponding acids are more effective ones for the reaction since addition of these salts could lead to lower pH values and higher acid anion concentrations in finishing baths. The mechanism explains the results of FTIR and wrinkle recovery angles of the fabrics cured under different temperatures and times.


Subject(s)
Alkalies/chemistry , Butanes/chemistry , Carboxylic Acids/chemistry , Cellulose/chemistry , Salts/chemistry , Catalysis , Dichloroacetic Acid/chemistry , Esterification , Phosphinic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...