Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 34(5): 2323-2337, 2023 May.
Article in English | MEDLINE | ID: mdl-34520363

ABSTRACT

Molecular optimization, which transforms a given input molecule X into another Y with desired properties, is essential in molecular drug discovery. The traditional approaches either suffer from sample-inefficient learning or ignore information that can be captured with the supervised learning of optimized molecule pairs. In this study, we present a novel molecular optimization paradigm, Graph Polish. In this paradigm, with the guidance of the source and target molecule pairs of the desired properties, a heuristic optimization solution can be derived: given an input molecule, we first predict which atom can be viewed as the optimization center, and then the nearby regions are optimized around this center. We then propose an effective and efficient learning framework, Teacher and Student polish, to capture the dependencies in the optimization steps. A teacher component automatically identifies and annotates the optimization centers and the preservation, removal, and addition of some parts of the molecules; a student component learns these knowledges and applies them to a new molecule. The proposed paradigm can offer an intuitive interpretation for the molecular optimization result. Experiments with multiple optimization tasks are conducted on several benchmark datasets. The proposed approach achieves a significant advantage over the six state-of-the-art baseline methods. Also, extensive studies are conducted to validate the effectiveness, explainability, and time savings of the novel optimization paradigm.

2.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36526282

ABSTRACT

Identifying unknown protein functional modules, such as protein complexes and biological pathways, from protein-protein interaction (PPI) networks, provides biologists with an opportunity to efficiently understand cellular function and organization. Finding complex nonlinear relationships in underlying functional modules may involve a long-chain of PPI and pose great challenges in a PPI network with an unevenly sparse and dense node distribution. To overcome these challenges, we propose AdaPPI, an adaptive convolution graph network in PPI networks to predict protein functional modules. We first suggest an attributed graph node presentation algorithm. It can effectively integrate protein gene ontology attributes and network topology, and adaptively aggregates low- or high-order graph structural information according to the node distribution by considering graph node smoothness. Based on the obtained node representations, core cliques and expansion algorithms are applied to find functional modules in PPI networks. Comprehensive performance evaluations and case studies indicate that the framework significantly outperforms state-of-the-art methods. We also presented potential functional modules based on their confidence.


Subject(s)
Protein Interaction Mapping , Protein Interaction Maps , Protein Interaction Mapping/methods , Algorithms , Proteins/genetics , Proteins/metabolism
3.
Med Image Anal ; 78: 102395, 2022 05.
Article in English | MEDLINE | ID: mdl-35231851

ABSTRACT

Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Humans , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/standards , Learning
4.
IEEE Trans Cybern ; 52(12): 12771-12784, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34398775

ABSTRACT

Clustering techniques attempt to group objects with similar properties into a cluster. Clustering the nodes of an attributed graph, in which each node is associated with a set of feature attributes, has attracted significant attention. Graph convolutional networks (GCNs) represent an effective approach for integrating the two complementary factors of node attributes and structural information for attributed graph clustering. Smoothness is an indicator for assessing the degree of similarity of feature representations among nearby nodes in a graph. Oversmoothing in GCNs, caused by unnecessarily high orders of graph convolution, produces indistinguishable representations of nodes, such that the nodes in a graph tend to be grouped into fewer clusters, and pose a challenge due to the resulting performance drop. In this study, we propose a smoothness sensor for attributed graph clustering based on adaptive smoothness-transition graph convolutions, which senses the smoothness of a graph and adaptively terminates the current convolution once the smoothness is saturated to prevent oversmoothing. Furthermore, as an alternative to graph-level smoothness, a novel fine-grained nodewise-level assessment of smoothness is proposed, in which smoothness is computed in accordance with the neighborhood conditions of a given node at a certain order of graph convolution. In addition, a self-supervision criterion is designed considering both the tightness within clusters and the separation between clusters to guide the entire neural network training process. The experiments show that the proposed methods significantly outperform 13 other state-of-the-art baselines in terms of different metrics across five benchmark datasets. In addition, an extensive study reveals the reasons for their effectiveness and efficiency.


Subject(s)
Algorithms , Neural Networks, Computer , Cluster Analysis
5.
IEEE Trans Neural Netw Learn Syst ; 33(1): 12-24, 2022 01.
Article in English | MEDLINE | ID: mdl-34813479

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is spreading worldwide. Considering the limited clinicians and resources and the evidence that computed tomography (CT) analysis can achieve comparable sensitivity, specificity, and accuracy with reverse-transcription polymerase chain reaction, the automatic segmentation of lung infection from CT scans supplies a rapid and effective strategy for COVID-19 diagnosis, treatment, and follow-up. It is challenging because the infection appearance has high intraclass variation and interclass indistinction in CT slices. Therefore, a new context-aware neural network is proposed for lung infection segmentation. Specifically, the autofocus and panorama modules are designed for extracting fine details and semantic knowledge and capturing the long-range dependencies of the context from both peer level and cross level. Also, a novel structure consistency rectification is proposed for calibration by depicting the structural relationship between foreground and background. Experimental results on multiclass and single-class COVID-19 CT images demonstrate the effectiveness of our work. In particular, our method obtains the mean intersection over union (mIoU) score of 64.8%, 65.2%, and 73.8% on three benchmark datasets for COVID-19 infection segmentation.


Subject(s)
COVID-19/diagnostic imaging , Tomography, X-Ray Computed/methods , Algorithms , Benchmarking , Calibration , Diagnosis, Differential , Humans , Image Processing, Computer-Assisted , Neural Networks, Computer , Pneumonia/diagnosis , Pneumonia/diagnostic imaging
6.
IEEE Trans Comput Soc Syst ; 8(4): 938-945, 2021 Aug.
Article in English | MEDLINE | ID: mdl-35582632

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic spread throughout China and worldwide since it was reported in Wuhan city, China in December 2019. 4 589 526 confirmed cases have been caused by the pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), by May 18, 2020. At the early stage of the pandemic, the large-scale mobility of humans accelerated the spread of the pandemic. Rapidly and accurately tracking the population inflow from Wuhan and other cities in Hubei province is especially critical to assess the potential for sustained pandemic transmission in new areas. In this study, we first analyze the impact of related multisource urban data (such as local temperature, relative humidity, air quality, and inflow rate from Hubei province) on daily new confirmed cases at the early stage of the local pandemic transmission. The results show that the early trend of COVID-19 can be explained well by human mobility from Hubei province around the Chinese Lunar New Year. Different from the commonly-used pandemic models based on transmission dynamics, we propose a simple but effective short-term prediction model for COVID-19 cases, considering the human mobility from Hubei province to the target cities. The performance of our proposed model is validated by several major cities in Guangdong province. For cities like Shenzhen and Guangzhou with frequent population flow per day, the values of [Formula: see text] of daily prediction achieve 0.988 and 0.985. The proposed model has provided a reference for decision support of pandemic prevention and control in Shenzhen.

7.
Article in English | MEDLINE | ID: mdl-32974293

ABSTRACT

Due to the cost and complexity of biological experiments, many computational methods have been proposed to predict potential miRNA-disease associations by utilizing known miRNA-disease associations and other related information. However, there are some challenges for these computational methods. First, the relationships between miRNAs and diseases are complex. The computational network should consider the local and global influence of neighborhoods from the network. Furthermore, predicting disease-related miRNAs without any known associations is also very important. This study presents a new computational method that constructs a heterogeneous network composed of a miRNA similarity network, disease similarity network, and known miRNA-disease association network. The miRNA similarity considers the miRNAs and their possible families and clusters. The information of each node in heterogeneous network is obtained by aggregating neighborhood information with graph convolutional networks (GCNs), which can pass the information of a node to its intermediate and distant neighbors. Disease-related miRNAs with no known associations can be predicted with the reconstructed heterogeneous matrix. We apply 5-fold cross-validation, leave-one-disease-out cross-validation, and global and local leave-one-out cross-validation to evaluate our method. The corresponding areas under the curves (AUCs) are 0.9616, 0.9946, 0.9656, and 0.9532, confirming that our approach significantly outperforms the state-of-the-art methods. Case studies show that this approach can effectively predict new diseases without any known miRNAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...