Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Article in English | MEDLINE | ID: mdl-38757331

ABSTRACT

INTRODUCTION: The aim of this study was to investigate the potential of dihydroartemisinin to augment the efficacy of cisplatin chemotherapy through the modulation of LASS2 expression. METHODS: TCMSP, CTR-DB, TCGA-BLC, and other databases were used to analyze the possibility of LASS2 as the target gene of dihydroartemisinin. Cell experiments revealed the synergistic effect of DDP and DHA. Animal experiments showed that DHA inhibited the growth of DDP-treated mice. In addition, WB, real-time PCR, and immunohistochemical analysis showed that DHA enhanced LASS2 (CERS2) expression in bladder cancer cells and DDP-treated mice. RESULTS: LASS2 is associated with cisplatin chemosensitivity.LASS2 expression levels are different between BLC tissues and normal tissues. COX analysis showed that patients with high LASS2 expression had a higher cumulative overall survival rate than those with low LASS2 expression. The Sankey plot showed that LASS2 expression is lower in BLC tissues with more advanced stage and distant metastasis. The docking score of DHA and LASS2 reached the maximum value of -5.5259, indicating that DHA had a strong binding affinity with LASS2 targets. CCK8 assay showed that the most effective concentration ratio of DHA to DDP was 2.5µg/ml + 10µg/ml. In vivo experiments showed that DHA inhibited tumor growth in cisplatin-treated mice. In addition, WB, RT-qPCR, and immunohistochemical analysis showed that DHA was able to enhance LASS2 expression in BLC cells and DDP-treated mice. CONCLUSION: The upregulation of LASS2 (CERS2) expression in bladder cancer cells by DHA has been found to enhance cisplatin chemosensitivity.

2.
Adv Sci (Weinh) ; : e2308438, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582099

ABSTRACT

Intratumor heterogeneity (ITH) of bladder cancer (BLCA) contributes to therapy resistance and immune evasion affecting clinical prognosis. The molecular and cellular mechanisms contributing to BLCA ITH generation remain elusive. It is found that a TM4SF1-positive cancer subpopulation (TPCS) can generate ITH in BLCA, evidenced by integrative single cell atlas analysis. Extensive profiling of the epigenome and transcriptome of all stages of BLCA revealed their evolutionary trajectories. Distinct ancestor cells gave rise to low-grade noninvasive and high-grade invasive BLCA. Epigenome reprograming led to transcriptional heterogeneity in BLCA. During early oncogenesis, epithelial-to-mesenchymal transition generated TPCS. TPCS has stem-cell-like properties and exhibited transcriptional plasticity, priming the development of transcriptionally heterogeneous descendent cell lineages. Moreover, TPCS prevalence in tumor is associated with advanced stage cancer and poor prognosis. The results of this study suggested that bladder cancer interacts with its environment by acquiring a stem cell-like epigenomic landscape, which might generate ITH without additional genetic diversification.

3.
Biopreserv Biobank ; 21(2): 176-183, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35759420

ABSTRACT

Background: RNA extracted from human blood has been widely applied to biological, medical, and clinical research of numerous diseases. Previous studies have demonstrated that high-quality RNA is indispensable to guarantee the reliability of downstream assays. In this study, we investigated the effects of freezing procedures, rewarming methods, and blood components on RNA quality of blood samples. Methods: Rabbit blood samples were divided into two groups: (1) whole blood (WB) and (2) blood cell components (BCC) with plasma removed. Samples were frozen using four representative freezing procedures (snap freezing in liquid nitrogen, snap freezing at -80°C, traditional slow freezing, and programmable controlled rate freezing) and rewarmed by placing at 4°C or by vortexing. RNA was extracted using the phenol-chloroform RNA extraction method and measured by an Agilent bioanalyzer. Then, human blood was used to verify the best protocol obtained from the rabbit blood experiment. Results: For the four freezing procedures, there were no differences in RNA integrity. For different rewarming methods, RNA integrity number (RIN) values of RNA extracted from frozen WB and BCC samples in the vortex group were above 9, while RNA obtained from WB showed worse quality compared with BCC in the 4°C group. For verification using human blood, RIN values of frozen human WB rewarmed by vortexing ranged from 8.0 to 9.1. Conclusions: Blood components and rewarming methods could affect the RNA quality of blood samples. For scenarios where WB samples have already been cryopreserved, the vortex rewarming method is optimal for high-quality RNA. Otherwise, we would recommend centrifuging fresh WB and cryopreserving it in the form of BCC, which showed a tendency to obtain high-quality RNA by either of the two rewarming methods.


Subject(s)
RNA , Rewarming , Animals , Humans , Rabbits , Freezing , Reproducibility of Results , Cryopreservation/methods
4.
Clin Transl Med ; 12(8): e1008, 2022 08.
Article in English | MEDLINE | ID: mdl-35968916

ABSTRACT

BACKGROUND: State-of-art non-invasive diagnosis processes for bladder cancer (BLCA) harbour shortcomings such as low sensitivity and specificity, unable to distinguish between high- (HG) and low-grade (LG) tumours, as well as inability to differentiate muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). This study investigates a comprehensive characterization of the entire DNA methylation (DNAm) landscape of BLCA to determine the relevant biomarkers for the non-invasive diagnosis of BLCA. METHODS: A total of 304 samples from 224 donors were enrolled in this multi-centre, prospective cohort study. BLCA-specific DNAm signature discovery was carried out with genome-wide bisulfite sequencing in 32 tumour tissues and 12 normal urine samples. A targeted sequencing assay for BLCA-specific DNAm signatures was developed to categorize tumour tissue against normal urine, or MIBC against NMIBC. Independent validation was performed with targeted sequencing of 259 urine samples in a double-blinded manner to determine the clinical diagnosis and prognosis value of DNAm-based classification models. Functions of genomic region harbouring BLCA-specific DNAm signature were validated with biological assays. Concordances of pathology to urine tumour DNA (circulating tumour DNA [ctDNA]) methylation, genomic mutations or other state-of-the-art diagnosis methods were measured. RESULTS: Genome-wide DNAm profile could accurately classify LG tumour from HG tumour (LG NMIBC vs. HG NMIBC: p = .038; LG NMIBC vs. HG MIBC, p = .00032; HG NMIBC vs. HG MIBC: p = .82; Student's t-test). Overall, the DNAm profile distinguishes MIBC from NMIBC and normal urine. Targeted-sequencing-based DNAm signature classifiers accurately classify LG NMIBC tissues from HG MIBC and could detect tumours in urine at a limit of detection of less than .5%. In tumour tissues, DNAm accurately classifies pathology, thus outperforming genomic mutation or RNA expression profiles. In the independent validation cohort, pre-surgery urine ctDNA methylation outperforms fluorescence in situ hybridization (FISH) assay to detect HG BLCA (n = 54) with 100% sensitivity (95% CI: 82.5%-100%) and LG BLCA (n = 26) with 62% sensitivity (95% CI: 51.3%-72.7%), both at 100% specificity (non-BLCA: n = 72; 95% CI: 84.1%-100%). Pre-surgery urine ctDNA methylation signature correlates with pathology and predicts recurrence and metastasis. Post-surgery urine ctDNA methylation (n = 61) accurately predicts recurrence-free survival within 180 days, with 100% accuracy. CONCLUSION: With the discovery of BLCA-specific DNAm signatures, targeted sequencing of ctDNA methylation outperforms FISH and DNA mutation to detect tumours, predict recurrence and make prognoses.


Subject(s)
Circulating Tumor DNA , Urinary Bladder Neoplasms , Biomarkers, Tumor/genetics , DNA Methylation/genetics , Humans , In Situ Hybridization, Fluorescence , Prospective Studies , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
5.
BMC Med Genomics ; 15(1): 24, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35135561

ABSTRACT

BACKGROUND: Pyroptosis can not only inhibit the occurrence and development of tumors but also develop a microenvironment conducive to cancer growth. However, pyroptosis research in prostate cancer (PCa) has rarely been reported. METHODS: The expression profile and corresponding clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Patients were divided into different clusters using consensus clustering analysis, and differential genes were obtained. We developed and validated a prognostic biomarker for biochemical recurrence (BCR) of PCa using univariate Cox analysis, Lasso-Cox analysis, Kaplan-Meier (K-M) survival analysis, and time-dependent receiver operating characteristics (ROC) curves. RESULTS: The expression levels of most pyroptosis-related genes (PRGs) are different not only between normal and tumor tissues but also between different clusters. Cluster 2 patients have a better prognosis than cluster 1 patients, and there are significant differences in immune cell content and biological pathway between them. Based on the classification of different clusters, we constructed an eight genes signature that can independently predict the progression-free survival (PFS) rate of a patient, and this signature was validated using a GEO data set (GSE70769). Finally, we established a nomogram model with good accuracy. CONCLUSIONS: In this study, PRGs were used as the starting point and based on the expression profile and clinical data, a prognostic signature with a high predictive value for biochemical recurrence (BCR) following radical prostatectomy (RP) was finally constructed, and the relationship between pyroptosis, immune microenvironment, and PCa was explored, providing important clues for future research on pyroptosis and immunity.


Subject(s)
Prostatic Neoplasms , Pyroptosis , Biomarkers, Tumor/genetics , Humans , Kaplan-Meier Estimate , Male , Prognosis , Prostatic Neoplasms/genetics , Pyroptosis/genetics , Tumor Microenvironment/genetics
6.
Zhonghua Nan Ke Xue ; 16(11): 990-3, 2010 Nov.
Article in Chinese | MEDLINE | ID: mdl-21218640

ABSTRACT

OBJECTIVE: To investigate the association of V89L polymorphism of the SRD5A2 gene with the prognostic factors of prostate cancer (PCa). METHODS: We identified the V89L polymorphic sites of the SRD5A2 gene after Rsa-1 restriction enzyme digestion, observed the distribution of V89L (VV, VL and LL) polymorphism in 112 PCa and 89 benign prostate hyperplasia (BPH) patients, and determined the association of V89L polymorphism with the age, free PSA (fPSA), total PSA (tPSA), fPSA/tPSA ratio, tumor stage and Gleason score of the PCa patients. RESULTS: No statistically significant differences were found in the V89L polymorphism-induced genetic risk frequencies between the PCa and BPH groups (chi2 = 3. 606, df = 2, P = 0. 165), nor any significant correlation between the genotypes of VV and VL + LL and the differences in the fPSA, tPSA, fPSA/tPSA ratio, tumor stage, Gleason score and age of the PCa patients. VV and VL + LL showed no obvious association with the prognostic factors of PCa. CONCLUSION: V89L polymorphism is not related with the prognosis of PCa, but may be indirectly associated with its risk.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Membrane Proteins/genetics , Polymorphism, Genetic , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Aged , Aged, 80 and over , Genotype , Humans , Male , Middle Aged , Neoplasm Staging , Prognosis , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...