Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
BMC Geriatr ; 24(1): 506, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849763

ABSTRACT

AIM: This study was conducted in Urumqi, Xinjiang, to assess the prevalence of sarcopenia and to determine the relationship between physical activity, nutritional status, and sarcopenia among community-dwelling patients with type 2 diabetes mellitus. METHODS: Four hundred eight cases of older people patients with type 2 diabetes mellitus in the community in Urumqi, Xinjiang, from May to August 2022 were selected for a cross-sectional on-site survey, and general information questionnaires, clinical information surveys, physical function measurements, and criteria developed by the Asian sarcopenia working group in 2019 were selected for diagnosis of sarcopenia, and unifactorial and multifactorial binary Logistic regression were applied to analyze the influencing factors of T2DM combined with sarcopenia in patients with sarcopenia. RESULTS: Among the 408 patients, 84 (20.6%) had sarcopenia, with a prevalence of 12.6%, 32.1%, and 51.9% in those aged 60-70, 71- 80, and 81 or older respectively. The prevalence increased significantly with age. Adjusting for variables, the study found that FFM of the Left Leg (OR: 0.710, 95% CI: 0.612-0.804, P = 0.024), FFM of the Right Arm (OR: 0.710, 95% CI: 0.612-0.804, P < 0.001), Age (OR: 1.246, 95% CI: 1.031-1.505, P = 0.023), Fasting Blood Glucose (OR: 1.649, 95% CI: 1.066-2.550, P = 0.025), and Post-Prandial Blood Glucose (OR: 1.455, 95% CI: 0.999-2.118, P = 0.025) were independent associated factors. An increase in MNA score (OR: 0.398, 95% CI: 0.244-0.6500, P < 0.001), ASMI (OR: 0.000, 95% CI: 0.00-0.01, P < 0.001) walking energy expenditure (MET-min) (OR: 0.998, 95% CI: 0.996-0.999, P = 0.001) reduced the prevalence of sarcopenia. CONCLUSION: This study shows that increased age, increased skeletal muscle mass index, decreased right arm FFM, increased postprandial glucose, increased MNA scores, and increased walking energy expenditure (MET-min) were associated with type 2 diabetes with sarcopenia.


Subject(s)
Diabetes Mellitus, Type 2 , Exercise , Independent Living , Nutritional Status , Sarcopenia , Humans , Sarcopenia/epidemiology , Sarcopenia/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Cross-Sectional Studies , Male , Aged , Female , Independent Living/trends , Middle Aged , Nutritional Status/physiology , Aged, 80 and over , Prevalence , Exercise/physiology , China/epidemiology
2.
Sci Rep ; 14(1): 9786, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684921

ABSTRACT

Hydroxyapatite (HAP) constitutes the primary mineral component of bones, and its crystal structure, along with the surface interaction with proteins, significantly influences the outstanding mechanical properties of bone. This study focuses on natural hydroxyapatite, constructing a surface model with calcium vacancy defects. Employing a representative model of aspartic acid residues, we delve into the adsorption mechanism on the crystal surface and scrutinize the adsorption forms of amino acid residues on HAP and calcium-deficient hydroxyapatite (CDHA) surfaces. The research also explores the impact of different environments on adsorption energy. Furthermore, a simplified sandwich structure of crystal-polypeptide-crystal is presented, analyzing the distribution of amino acid residue adsorption sites on the crystal surface of the polypeptide fragment. This investigation aims to elucidate how the stick-slip mechanism of polypeptide molecules on the crystal surface influences the mechanical properties of the system. By uncovering the interface mechanical behavior between HAP and osteopontin peptides, this article offers valuable theoretical insights for the construction and biomimetic design of biocomposites.


Subject(s)
Bone and Bones , Durapatite , Osteopontin , Durapatite/chemistry , Bone and Bones/metabolism , Bone and Bones/chemistry , Osteopontin/chemistry , Osteopontin/metabolism , Adsorption , Peptides/chemistry , Peptides/metabolism , Humans , Models, Molecular , Protein Binding , Crystallization , Surface Properties , Calcium/metabolism , Calcium/chemistry
3.
J Med Microbiol ; 73(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38353511

ABSTRACT

Introduction. Salmonella Typhimurium (STM) is a food-borne Gram-negative bacterium, which can infect humans and a wide range of livestock and poultry, causing a variety of diseases such as septicaemia, enteritis and abortion.Hypothesis/Gap Statement. We will decipher the impacts of sRNA STnc1280 on STM virulence and provide a theoretical basis to reveal the regulatory role and molecular mechanism of STnc1280.Aim. The main objective of this study was to clarify whether sRNA STnc1280 exerts regulatory roles on STM pathogenicity.Methodology. The STnc1280 gene was amplified and its molecular characteristics were analysed in this study. Then, STnc1280 gene deletion strain (STM-ΔSTnc1280) and the complementary strain (ΔSTnc1280/STnc1280) were constructed by λ-Red homologous recombination method, respectively, to analyse of adhesion and invasive ability and pathogenicity of different strains. Subsequently, the potential target gene regulated by STnc1280 was predicted using target RNA2 software, followed by the verification of the interaction between STnc1280 and target mRNA using the dual plasmid reporter system (DPRS). Furthermore, the mRNA and protein level of target gene was determined using qRT-PCR and Western blot, respectively.Results. The results revealed that the cell adhesion and invasive ability and pathogenicity of STM-ΔSTnc1280 were significantly reduced compared to STM-SL1344 strain, indicating that the deficiency of STnc1280 gene significantly influenced STM pathogenicity. The DPRS results showed that STnc1280 can interact with the mRNA of target gene gldA, thus suppressing the expression of lacZ gene. Furthermore, the level of gldA mRNA was not influenced in STM-ΔSTnc1280, but the expression of GldA protein decreased significantly.Conclusion. Combining the bioinformatic analysis, these findings suggested that STnc1280 may bind to the SD sequence of gldA mRNA, hindering the binding of ribosomes to gldA mRNA, thereby inhibiting the expression of GldA protein to modulate the virulence of STM.


Subject(s)
Salmonella typhimurium , Virulence Factors , Humans , Pregnancy , Female , Salmonella typhimurium/genetics , Virulence/genetics , RNA, Messenger/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Plasmids , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
4.
Clin Biomech (Bristol, Avon) ; 108: 106072, 2023 08.
Article in English | MEDLINE | ID: mdl-37611387

ABSTRACT

BACKGROUND: The morphology of osteocyte lacunae varies in bones of different ages and bone pathologies. Osteocyte lacunae can cause stress concentration and initiate microcracks. However, the influence of changes in osteocyte lacunar shape on microcrack is unknown. Therefore, the aim of this study was to determine the effects of osteocyte lacunae with different shapes on microcrack initiation and propagation. METHODS: Osteon models containing osteocyte lacunae with different shapes were established. The progressive damage analysis method, based on computer simulations, was used to study the evolution of microdamage within the osteon, including the processes of intralaminar and interlaminar microdamage. FINDINGS: Models with larger DoE values can effectively delay or prevent the formation of linear microcracks, which ensures high fracture toughness of cortical bone. It is subjected to stronger mechanical stimulation, making it more sensitive to loads. Models with smaller DoE values increase the load threshold for microdamage generation and reduces its impact on bone mechanical performance, making it less susceptible to microdamage than models with larger DoE values. INTERPRETATION: These findings enhance the limited knowledge of the influence of the lacunar shape on microdamage and contribute to a better understanding of bone biomechanics.


Subject(s)
Cortical Bone , Osteocytes , Humans , Biomechanical Phenomena , Cognition , Computer Simulation
5.
J Vet Res ; 67(1): 67-77, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37008770

ABSTRACT

Introduction: Listeria monocytogenes (LM) is an important food-borne pathogen, and the risk of its ingestion is a serious public health issue. The better its environmental adaptation mechanisms and pathogenicity are understood, the better the risk it poses can be countered. The regulatory role of the small non-coding RNA (sRNA) rli106 in the environmental adaptation and pathogenicity of LM is still unclear and this study investigated that role through its biological function. Material and Methods: An LM-Δrli106 gene deletion strain and an LM-Δrli106/rli106 gene complementation strain were constructed using the homologous recombination technique. Then, the adaptation of these strains to temperature, alkalinity, acidity, salinity, ethanol and oxidative stressors, their biofilm-forming ability and their pathogenicity in mice were investigated to show the regulatory roles of sRNA rli106 in LM. The target gene of rli106 was also predicted, and the interaction between it and rli106 was verified by a two-plasmid co-expressing system based on E.coli and Western blot analysis. Results: The adaptation of LM-Δrli106 to environmental stressors of pH 9, 5% NaCl and 8% NaCl, 3.8% ethanol and 5 mM H2O2 was significantly reduced when compared to the parental (LM EGD-e) and complementation strains. Also, the biofilm formation, cell adhesion, invasion, intracellular proliferation and pathogenicity of LM-Δrli106 in mice were significantly reduced. The results of two-plasmid co-expression and Western blot showed that rli106 can interact with the mRNA of the predicted DegU target gene. Conclusion: The sRNA rli106 may positively regulate the expression of the DegU gene in LM. This study sheds light on its regulatory roles in environmental adaptation and pathogenicity, providing new insights into the molecular mechanism of sRNA mediation in LM .

6.
J Mech Behav Biomed Mater ; 137: 105526, 2023 01.
Article in English | MEDLINE | ID: mdl-36343520

ABSTRACT

Natural hydroxyapatite provides certain strength and stiffness to biological bones, and most of the studies on the strength of bone tissues have been carried out on hydroxyapatite (HAP). However, the Ca/P ratio of hydroxyapatite in bones is actually about 1.50, and the natural hydroxyapatite belongs to calcium-deficient hydroxyapatite (CDHA) with Ca vacancy defects. Therefore, this work focused on the effect of Ca vacancy defects on CDHA crystals through investigating the generation and expansion of microcracks under uniaxial tensile loading by combining molecular dynamics and first principles method. A series of crystal models with different Ca vacancy ratios are constructed and find that Ca vacancies degrade the mechanical properties of hydroxyapatite. Meanwhile the fracture behavior of crystals is detailed and find that the cracks arise at vacancies and extend along the direction of vacancies. Also, first-principles calculation is performed to reveal the mechanism of crack formation in MD simulations. It is found that the decrease of Ca-O bonding of CDHA causes the decrease of the stability of the crystal structure by analyzing the DOS of HAP and CDHA, and the cracks originate from Ca vacancies. This work performs more realistic simulations of CDHA with calcium vacancy defects in actual bone tissue and directly reveals the development and progression of bone fragility at the nanometer scale.


Subject(s)
Calcium , Molecular Dynamics Simulation , Calcium/chemistry , Durapatite/chemistry , Bone and Bones
7.
Mol Psychiatry ; 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36434056

ABSTRACT

Elucidating the molecular mechanism underlying the hyperactivity of the hypothalamic-pituitary-adrenal axis during chronic stress is critical for understanding depression and treating depression. The secretion of corticotropin-releasing hormone (CRH) from neurons in the paraventricular nucleus (PVN) of the hypothalamus is controlled by salt-inducible kinases (SIKs) and CREB-regulated transcription co-activators (CRTCs). We hypothesised that the SIK-CRTC system in the PVN might contribute to the pathogenesis of depression. Thus, the present study employed chronic social defeat stress (CSDS) and chronic unpredictable mild stress (CUMS) models of depression, various behavioural tests, virus-mediated gene transfer, enzyme-linked immunosorbent assay, western blotting, co-immunoprecipitation, quantitative real-time reverse transcription polymerase chain reaction, and immunofluorescence to investigate this connection. Our results revealed that both CSDS and CUMS induced significant changes in SIK1-CRTC1 signalling in PVN neurons. Both genetic knockdown of SIK1 and genetic overexpression of CRTC1 in the PVN simulated chronic stress, producing a depression-like phenotype in naive mice, and the CRTC1-CREB-CRH pathway mediates the pro-depressant actions induced by SIK1 knockdown in the PVN. In contrast, both genetic overexpression of SIK1 and genetic knockdown of CRTC1 in the PVN protected against CSDS and CUMS, leading to antidepressant-like effects in mice. Moreover, stereotactic infusion of TAT-SIK1 into the PVN also produced beneficial effects against chronic stress. Furthermore, the SIK1-CRTC1 system in the PVN played a role in the antidepressant actions of fluoxetine, paroxetine, venlafaxine, and duloxetine. Collectively, SIK1 and CRTC1 in PVN neurons are closely involved in depression neurobiology, and they could be viable targets for novel antidepressants.

8.
Arch Microbiol ; 204(12): 716, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36400974

ABSTRACT

Salmonella Typhimurium (STM) is one of the most important food-borne bacteria that seriously harms livestock and human beings, which is capable of regulating the expression of its own genes in a variety of ways to adapt to a wide variety of adverse environmental stresses. To understand the regulatory roles of sRNA STnc1480 on the capability of STM, the STnc1480 gene-deficient strain △STnc1480 and its complement strain △STnc1480/STnc1480 were generated, and the impacts of STnc1480 gene deficiency on the capability of responding to different environmental stresses, biofilm(BF)formation and pathogenicity were analyzed, respectively. Then the target genes that were regulated by STnc1480 were also analyzed and explored. Compared with parent and complement strains, the deficiency of the STnc1480 gene significantly reduced the BF formation. Moreover, the capacities of adhesion and invasiveness of the △STnc1480 strain to macrophages were also significantly reduced, while the LD50 in mice was significantly increased. The bacterial loads in liver and spleen were significantly reduced, and the pathological damage was alleviated. It was confirmed that the STnc1480 could be complementary to the 5'-UTR (-52 to -71 bases) region of lpfA mRNA. The bacterial dual-plasmid reporting system confirmed that STnc1480 was capable of interacting with the mRNA of the lpfA gene, suggesting that STnc1480 can regulate the 5'-UTR of the lpfA mRNA at post-transcription level to reduce the expression of the bacterial fimbria, thus reducing the BF formation and pathogenicity of STM.


Subject(s)
RNA , Salmonella typhimurium , Humans , Mice , Animals , Salmonella typhimurium/metabolism , Virulence/genetics , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , RNA, Messenger/metabolism
9.
Pathogens ; 11(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36297193

ABSTRACT

Small RNAs (sRNAs) are a kind of regulatory molecule that can modulate gene expression at the post-transcriptional level, thereby involving alteration of the physiological characteristics of bacteria. However, the regulatory roles and mechanisms of most sRNAs remain unknown in Listeria monocytogenes(L. monocytogenes). To explore the regulatory roles of sRNA Rli43 in L. monocytogenes, the rli43 gene deletion strain LM-Δrli43 and complementation strain LM-Δrli43-rli43 were constructed to investigate the effects of Rli43 on responses to environmental stress, biofilm formation, and virulence, respectively. Additionally, Rli43-regulated target genes were identified using bioinformatic analysis tools and a bacterial dual plasmid reporter system based on E. coli. The results showed that the intracellular expression level of the rli43 gene was significantly upregulated compared with those under extracellular conditions. Compared with the parental and complementation strains, the environmental adaptation, motility, biofilm formation, adhesion, invasion, and intracellular survival of LM-Δrli43 were significantly reduced, respectively, whereas the LD50 of LM-Δrli43 was significantly elevated in BALB/c mice. Furthermore, the bacterial loads and pathological damages were alleviated, suggesting that sRNA Rli43 was involved in the modulation of the virulence of L. monocytogenes. It was confirmed that Rli43 may complementarily pair with the 5'-UTR (-47--55) of HtrA mRNA, thereby regulating the expression level of HtrA protein at the post-transcriptional level. These findings suggest that Rli43-mediated control was involved in the modulation of environmental adaptation, biofilm formation, and virulence in L. monocytogenes.

10.
Brain Behav ; 12(8): e2705, 2022 08.
Article in English | MEDLINE | ID: mdl-35848938

ABSTRACT

INTRODUCTION: The most striking feature of depression is sadness and a loss of interest in activities, which represents a major cause of disability globally. Therefore, it is necessary to identify novel antidepressants for clinical practice. Ginsenoside Rh2 (Rh2) is one of the major bioactive ginsenosides that can be extracted from Panax ginseng and has been demonstrated to improve both memory and learning. The purpose of this study was to provide broad insight into the mechanisms underlying depression and gain greater insights into antidepressant therapy. METHODS: In this study, we first established an effective and feasible depression animal model of chronic unpredictable mild stress (CUMS) and behavioral testing was evaluated by the forced swim test (FST), the tail suspension test (TST) and the sucrose preference test. Following pretreatment with Rh2 (10 and 20 mg/kg), the immobility time of mice was reduced without affecting locomotor activity in both the FST and TST. Western blotting and immunofluorescence were used to investigate the activation of the hippocampal BDNF signaling pathway and hippocampal neurogenesis. RESULTS: Different concentrations of Rh2 significantly reduced depressive-like symptoms in CUMS-induced mice and downregulated the effects of the BDNF signaling cascade and neurogenesis in the hippocampus. Furthermore, the administration of K252a completely prevented the antidepressant-like activity of Rh2 in mice. CONCLUSION: The results indicated that Rh2 possesses the antidepression action via the positive regulation of the BDNF-TrkB pathway.


Subject(s)
Ginsenosides , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/etiology , Depression/metabolism , Disease Models, Animal , Ginsenosides/metabolism , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Hippocampus/metabolism , Mice , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
11.
Curr Neurovasc Res ; 19(2): 210-218, 2022.
Article in English | MEDLINE | ID: mdl-35838216

ABSTRACT

OBJECTIVE: As one of the most prevalent psychiatric disorders, the exact pathogenesis of depression remains elusive. Therefore, there is an urgent need to identify novel antidepressants for effective treatment. MicroRNA-124 (miR-124), the most abundant miRNA in brain tissue, plays a key effect on adult neurogenesis and neuronal differentiation. However, the mechanism of miR-124 in depression has not been clarified so far. The aim of this study is to provide broad insight into the mechanisms underlying depression. METHODS: In the study, we used the forced swim test (FST), the tail suspension test (TST), and a Chronic Social Defeat Stress (CSDS) mice model of depression. Quantitative real-time reverse transcription PCR (qRT-PCR), western blotting, immunofluorescence and virus-mediated gene transfer were used together. The level of plasma corticosterone in mice was analyzed by Enzyme Linked Immunosorbent Assay (ELISA). RESULTS: It was found that CSDS robustly increased the level of miR-124 in the hippocampus. Genetic knockdown of hippocampal miR-124 produced significant antidepressant-like effects in the CSDS model of depression. Furthermore, AAV-siR-124-EGFP treatment increased the level of plasma corticosterone in CSDS-induced mice. Moreover, it was found that the antidepressant-like effects induced by miR-124 inhibition required the hippocampal BDNF-TrkB system. CONCLUSION: Hippocampal miR-124 participated in the pathogenesis of depression by regulating BDNF biosynthesis and was a feasible antidepressant target.


Subject(s)
MicroRNAs , Social Defeat , Mice , Animals , Brain-Derived Neurotrophic Factor/metabolism , Depression/etiology , Depression/metabolism , Mice, Inbred C57BL , Stress, Psychological/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Hippocampus/metabolism , Corticosterone/pharmacology , Disease Models, Animal , MicroRNAs/genetics , MicroRNAs/metabolism
12.
Korean J Parasitol ; 60(2): 117-126, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35500893

ABSTRACT

Cystatin, a cysteine protease inhibitor found in many parasites, plays important roles in immune evasion. This study analyzed the molecular characteristics of a cystatin from Fasciola hepatica (FhCystatin) and expressed recombinant FhCystatin (rFhcystatin) to investigate the immune modulatory effects on lipopolysaccharide-induced proliferation, migration, cytokine secretion, nitric oxide (NO) production, and apoptosis in mouse macrophages. The FhCystatin gene encoded 116 amino acids and contained a conserved cystatin-like domain. rFhCystatin significantly inhibited the activity of cathepsin B. rFhCystatin bound to the surface of mouse RAW264.7 cells, significantly inhibited cell proliferation and promoted apoptosis. Moreover, rFhCystatin inhibited the expression of cellular nitric oxide, interleukin-6, and tumor necrosis factor-α, and promoted the expression of transforming growth factor-ß and interleukin-10. These results showed that FhCystatin played an important role in regulating the activity of mouse macrophages. Our findings provide new insights into mechanisms underlying the immune evasion and contribute to the exploration of potential targets for the development of new drug to control F. hepatica infection.


Subject(s)
Cystatins , Fasciola hepatica , Animals , Cystatins/genetics , Cystatins/metabolism , Cysteine Proteinase Inhibitors , Fasciola hepatica/genetics , Mice , Nitric Oxide/metabolism , Tumor Necrosis Factor-alpha
13.
Parasite ; 29: 16, 2022.
Article in English | MEDLINE | ID: mdl-35315767

ABSTRACT

Fascioliasis is an important zoonotic helminthic disease caused by Fasciola hepatica and poses a serious threat to global public health. To evade the immune response of its host (humans or animals), F. hepatica secretes various antioxidant enzymes such as glutathione transferase (GST) to facilitate its invasion, migration and parasitism in vivo. To investigate the biological functions of a novel omega-class GST (GSTO), the molecular features of GSTO2 of F. hepatica were analyzed by online software, and the biochemical properties in vitro of recombinant GSTO2 (rGSTO2) were dissected. Then, the regulatory roles of rGSTO2 protein in murine macrophages in vitro were further explored. The results revealed that the GSTO2 gene encodes 254 amino acids, which harbor the characteristic N-terminal domain (ßαßαßßα) and C-terminal domain (α-helical) of the cytoplasmic GST superfamily. GSTO2 was mainly expressed in F. hepatica vitelline follicles, intestinal tract, excretory pores and vitelline cells, with thioltransferase and dehydroascorbate reductase activities. Moreover, rGSTO2 protein could be taken up by murine macrophages and significantly inhibit the viability of macrophages. In addition, rGSTO2 protein could significantly promote apoptosis and modulate the expression of cytokines in macrophages. These findings suggested that F. hepatica GSTO2 plays an important role in modulating the physiological functions of macrophages, whereby this protein might be involved in immunomodulatory and anti-inflammatory roles during infection. This study provided new insights into the immune-evasion mechanism of F. hepatica and may contribute to the development of a potential anti-inflammatory agent.


Title: Caractérisation moléculaire d'une nouvelle GSTO2 de Fasciola hepatica et ses rôles dans la modulation des macrophages murins. Abstract: La fasciolase est une importante maladie helminthique zoonotique causée par Fasciola hepatica, qui constitue une menace sérieuse pour la santé publique mondiale. Pour échapper à la réponse immunitaire de son hôte (humain ou animal), F. hepatica sécrète diverses enzymes antioxydantes telles que la glutathion transférase (GST) pour faciliter son invasion, sa migration et son parasitisme in vivo. Pour étudier les fonctions biologiques d'une nouvelle GST de classe oméga (GSTO), les caractéristiques moléculaires de la GSTO2 de F. hepatica ont été analysées par un logiciel en ligne et les propriétés biochimiques in vitro de sa protéine recombinante (rGSTO2) ont été disséquées. Ensuite, les rôles régulateurs de la protéine rGSTO2 sur les macrophages murins in vitro ont été explorés plus avant. Les résultats ont révélé que le gène GSTO2 code pour 254 acides aminés, qui abritent le domaine N-terminal caractéristique (ßαßαßßα) et le domaine C-terminal (α-hélicoïdal) de la superfamille GST cytoplasmique. Chez F. hepatica, GSTO2 était principalement exprimée dans les follicules vitellins, le tractus intestinal, les pores excréteurs et les cellules vitellines, avec des activités de thioltransférase et de déhydroascorbate réductase. De plus, la protéine rGSTO2 a pu être absorbée par les macrophages murins et inhiber de manière significative la viabilité des macrophages. Enfin, la protéine rGSTO2 a pu favoriser de manière significative l'apoptose et moduler l'expression des cytokines dans les macrophages. Ces résultats suggèrent que la GSTO2 de F. hepatica joue un rôle important dans la modulation des fonctions physiologiques des macrophages, cette protéine pouvant être impliquée dans des rôles immunomodulateurs et anti-inflammatoires au cours de l'infection. Cette étude a fourni de nouvelles informations sur le mécanisme d'évasion immunitaire de F. hepatica et pourrait contribuer au développement d'un agent anti-inflammatoire potentiel.


Subject(s)
Fasciola hepatica , Fascioliasis , Glutathione Transferase , Macrophages , Animals , Cytokines , Fasciola hepatica/enzymology , Fasciola hepatica/genetics , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Macrophages/parasitology , Mice
14.
Biochem Pharmacol ; 197: 114885, 2022 03.
Article in English | MEDLINE | ID: mdl-34968488

ABSTRACT

As a highly prevalent neuropsychiatric disorder worldwide, the pathophysiology of depression is not yet fully understood and based on multiple factors among which chronic stress is critical. Numerous previous studies have shown the role of central mammalian target of rapamycin complex 1 (mTORC1) signaling in depression. However, so far it remains elusive by which way chronic stress down-regulates the activity of central mTORC1. Liver kinase b1 (LKB1) has been demonstrated to regulate the activity of the mTORC1 signaling cascade by phosphorylating AMP activated protein kinase (AMPK). Here, this study aimed to explore whether LKB1 participates in depression by regulating the downstream AMPK-mTORC1 signaling, and various methods including mouse models of depression, western blotting and immunofluorescence were used together. Our results showed that chronic stress significantly enhanced the expression of both phosphorylated LKB1 and total LKB1 in the medial prefrontal cortex (mPFC) but not the hippocampus. Furthermore, genetic knockdown of LKB1 in the mPFC fully reversed not only the depressive-like behaviors induced by chronic stress in mice but also the effects of chronic stress on the activity of AMPK and the mTORC1 system. Taken together, this study preliminarily suggests that LKB1 in the mPFC could be a feasible target for antidepressants. This study also provides support for the potential use of LKB1 inhibition strategies against the chronic stress-related neuropsychiatric disorders.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Dependovirus/metabolism , Depression/metabolism , Prefrontal Cortex/metabolism , Social Defeat , Stress, Psychological/metabolism , AMP-Activated Protein Kinase Kinases/metabolism , AMP-Activated Protein Kinases/antagonists & inhibitors , Animals , Depression/virology , Female , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Prefrontal Cortex/virology , Stress, Psychological/virology
15.
Biochem Pharmacol ; 195: 114836, 2022 01.
Article in English | MEDLINE | ID: mdl-34774532

ABSTRACT

Depression is one of the most common psychiatric diseases in the 21st century, while its pathogenesis is not yet fully understood. Currently, besides to the monoaminergic system, the brain-derived neurotrophic factor (BDNF)-cAMP response element-binding protein (CREB) signaling is one of the most attractive signaling pathways for treating depression. Mitogen and stress-activated kinase (MSK) 1 and 2 are nuclear proteins activated downstream of the ERK1/2 or p38 MAPK pathways, and it has been demonstrated that MSKs are involved in the BDNF-CREB signaling. Here we assumed that MSKs may play a role in depression, and various methods including the chronic social defeat stress (CSDS) model of depression, western blotting, immunofluorescence and virus-mediated gene transfer were used together. It was found that CSDS fully enhanced the expression of both phosphorylated MSK1 and total MSK1 in the hippocampus but not the medial prefrontal cortex (mPFC). CSDS did not influence the expression of phosphorylated MSK2 and total MSK2 in the two brain regions. Genetic over-expression of hippocampal MSK1 fully prevented not only the CSDS-induced depressive-like behaviors but also the CSDS-induced dysfunction in the hippocampal BDNF-CREB signaling and neurogenesis in mice, while genetic knockdown of hippocampal MSK1 aggravated the CSDS-induced depressive-like symptomatology in mice. Our results collectively suggest that although CSDS evidently enhances the activity of hippocampal MSK1, it is not a contributor to the CSDS-induced dysfunction in the brain but a defensive feedback regulator which protects against CSDS. Therefore, hippocampal MSK1 participates in the pathogenesis of depression and is a feasible and potential antidepressant target.


Subject(s)
Behavior, Animal/physiology , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Neurogenesis/physiology , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Stress, Psychological/physiopathology , Animals , Blotting, Western , Depressive Disorder/physiopathology , Depressive Disorder/psychology , Disease Models, Animal , Hippocampus/enzymology , Humans , Male , Mice, Inbred C57BL , Signal Transduction/physiology , Social Defeat , Stress, Psychological/psychology
16.
Aging (Albany NY) ; 13(20): 23588-23602, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34670872

ABSTRACT

UCEC is one of the three common malignant tumors of the female reproductive tract. According to reports, the cure rate of early UCEC can reach 95%. Therefore, the development of prognostic markers will help UCEC patients to find the disease earlier and develop treatment earlier. The ALDH family was first discovered to be the essential gene of the ethanol metabolism pathway in the body. Recent studies have shown that ALDH can participate in the regulation of cancer. In our research, we explored the expression of the ALDH family in 33 cancers. It was found that ALDH2 was abnormally expressed in UCEC. Besides, in vivo and in vitro experiments were conducted to explore the effect of ALDH2 expression on the proliferation of UCEC cell lines. Meanwhile, the change of its expression is not due to gene mutations, but is regulated by miR-135-3p. At the same time, the impact of ALDH2 changes on the survival of UCEC patients is deeply discussed. Finally, a nomogram for predicting survival was constructed, with a C-index of 0.798 and AUC of 0.764. This study suggests that ALDH2 may play a crucial role in UCEC progression and has the potential as a prognostic biomarker of UCEC.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial/genetics , Endometrial Neoplasms , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics , Endometrial Neoplasms/mortality , Endometrial Neoplasms/pathology , Female , Humans , Models, Statistical , Prognosis , Protein Interaction Maps/genetics , Survival Analysis
17.
Pharmacol Res ; 174: 105932, 2021 12.
Article in English | MEDLINE | ID: mdl-34628001

ABSTRACT

As a widely-known neuropsychiatric disorder, the exact pathogenesis of depression remains elusive. MiRNA-206 (miR-206) is conventionally known as one of the myomiRs and has two forms: miR-206-3p and miR-206-5p. Recently, miR-206 has been demonstrated to regulate the biosynthesis of brain-derived neurotrophic factor (BDNF), a very popular target involved in depression and antidepressant responses. Here we assumed that miR-206 may play a role in depression, and various methods including the chronic social defeat stress (CSDS) model of depression, quantitative real-time reverse transcription PCR, western blotting, immuofluorescence and virus-mediated gene transfer were used together. It was found that CSDS robustly increased the level of miR-206-3p but not miR-206-5p in the hippocampus. Both genetic overexpression of hippocampal miR-206-3p and intranasal administration of AgomiR-206-3p induced not only notable depressive-like behaviors but also significantly decreased hippocampal BDNF signaling cascade and neurogenesis in naïve C57BL/6J mice. In contrast, both genetic knockdown of hippocampal miR-206-3p and intranasal administration of AntagomiR-206-3p produced significant antidepressant-like effects in the CSDS model of depression. Furthermore, it was found that the antidepressant-like effects induced by miR-206-3p inhibition require the hippocampal BDNF-TrkB system. Taken together, hippocampal miR-206-3p participates in the pathogenesis of depression by regulating BDNF biosynthesis and is a feasible antidepressant target.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Depression/genetics , Hippocampus/metabolism , MicroRNAs , Stress, Psychological/genetics , Animals , Antagomirs/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Female , Male , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
18.
FEMS Microbiol Lett ; 368(18)2021 10 04.
Article in English | MEDLINE | ID: mdl-34543394

ABSTRACT

Small RNAs (sRNAs) are essential virulent regulators in Salmonella typhimurium (STM). To explore the role of sRNA STnc150 in regulating STM virulence, we constructed a STnc150 deletion strain (ΔSTnc150) and its complementary strain (ΔSTnc150/C). Then, we compared their characteristics to their original parent strain experimentally, identified the target genes of STnc150 and determined the expression levels of target genes. The results showed that the ΔSTnc150 strain exhibited delayed biofilm formation, enhanced adhesion to macrophages, significantly reduced LD50, increased liver and spleen viral loads and more vital pathological damaging ability than its parent and complementary strains. Further, bioinformatics combined with the bacterial dual plasmid reporter system confirmed that the bases 72-88 of STnc150 locating at the secondary stem-loop structure of the STnc150 are complementary with the bases 1-19 in the 5'-terminal of fimA mRNA of the type 1 fimbriae subunit. Western blot analysis showed that fimA protein level was increased in STnc150 strain compared with its parent and complementary strains. Together, this study suggested that STnc150 can down-regulate STM fimA expression at the translation level, which provided insights into the regulatory mechanisms of sRNAs in virulence of STM.


Subject(s)
Antigens, Bacterial , Fimbriae Proteins , Gene Expression Regulation, Bacterial , RNA, Bacterial , Salmonella typhimurium , Virulence , Antigens, Bacterial/genetics , Fimbriae Proteins/genetics , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity , Virulence/genetics
19.
Front Pharmacol ; 12: 673221, 2021.
Article in English | MEDLINE | ID: mdl-34211395

ABSTRACT

As a well-known multimodal-acting antidepressant, vortioxetine is thought to aim at several serotonin (5-HT) receptors and the 5-HT transporter. However, recently more and more proteins besides 5-HT are being reported to participate in the antidepressant mechanism of vortioxetine. As a widely known nuclear hormone receptor, peroxisome proliferator activated receptor α (PPARα) possesses transcriptional activity and is very important in the brain. Several reports have suggested that hippocampal PPARα is implicated in antidepressant responses. Here we speculate that hippocampal PPARα may participate in the antidepressant mechanism of vortioxetine. In this study, chronic unpredictable mild stress (CUMS), chronic social defeat stress (CSDS), behavioral tests, the western blotting and adenovirus associated virus (AAV)-mediated gene knockdown methods were used together. It was found that vortioxetine administration significantly reversed the inhibitory actions of both CUMS and CSDS on the hippocampal PPARα expression. Pharmacological blockade of PPARα notably prevented the antidepressant actions of vortioxetine in the CUMS and CSDS models. Moreover, genetic knockdown of PPARα in the hippocampus also significantly blocked the protecting effects of vortioxetine against both CUMS and CSDS. Therefore, the antidepressant effects of vortioxetine in mice require hippocampal PPARα.

20.
Neurosci Lett ; 757: 135994, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34058291

ABSTRACT

Current available antidepressants have various adverse reactions and slow pharmacodynamics, so it is necessary to find novel antidepressants for effective treatment. Xanthoceraside (XAN), a novel triterpenoid saponin extracted from the fruit husks of Xanthoceras sorbifolium Bunge, has anti-amnesic and neuroprotective properties. The purpose and significance of this study is to assess whether XAN has antidepressant effects in mice using the forced swim test (FST), tail suspension test (TST) and chronic unpredictable mild stress (CUMS) model of depression. The effects of XAN treatment on the hippocampal brain-derived neurotrophic factor (BDNF) signaling pathway and neurogenesis were examined. The antidepressant mechanism of XAN was explored using a BDNF inhibitor (K252a) and an anti-BDNF antibody. It was found that XAN administration significantly reversed the depressive-like behaviors of CUMS-treated mice. XAN treatment also significantly prevented the decreasing effects of CUMS on the hippocampal BDNF signaling and neurogenesis. The antidepressant effects of XAN in mice were blocked by both administration of K252a and anti-BDNF antibody. Collectively, these findings indicate that XAN possesses antidepressant effects in mice which are mediated by activation of hippocampal BDNF signaling pathway, thus providing the first evidence that XAN can be a potential antidepressant candidate.


Subject(s)
Brain-Derived Neurotrophic Factor/agonists , Depression/drug therapy , Hippocampus/drug effects , Saponins/administration & dosage , Triterpenes/administration & dosage , Animals , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/antagonists & inhibitors , Brain-Derived Neurotrophic Factor/metabolism , Carbazoles/administration & dosage , Depression/etiology , Depression/pathology , Depression/psychology , Disease Models, Animal , Hippocampus/pathology , Humans , Indole Alkaloids/administration & dosage , Male , Mice , Signal Transduction/drug effects , Stress, Psychological/complications , Stress, Psychological/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...