Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Liver Int ; 44(4): 979-995, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38293784

ABSTRACT

BACKGROUND & AIMS: Accumulating evidences suggest tumour microenvironment (TME) profoundly influence clinical outcome in hepatocellular carcinoma (HCC). Existing immune subtypes are susceptible to batch effects, and integrative analysis of bulk and single-cell transcriptome is helpful to recognize immune subtypes and TME in HCC. METHODS: Based on the relative expression ordering (REO) of 1259 immune-related genes, an immuno-prognostic signature was developed and validated in 907 HCC samples from five bulk transcriptomic cohorts, including 72 in-house samples. The machine learning models based on subtype-specific gene pairs with stable REOs were constructed to jointly predict immuno-prognostic subtypes in single-cell RNA-seq data and validated in another single-cell data. Then, cancer characteristics, immune landscape, underlying mechanism and therapeutic benefits between subtypes were analysed. RESULTS: An immune-related signature with 29 gene pairs stratified HCC samples individually into two risk subgroups (C1 and C2), which was an independent prognostic factor for overall survival. The machine learning models verified the immune subtypes from five bulk cohorts to two single-cell transcriptomic data. Integrative analysis revealed that C1 had poorer outcomes, higher CNV burden and malignant scores, higher sensitivity to sorafenib, and exhibited an immunosuppressive phenotype with more regulators, e.g., myeloid-derived suppressor cells (MDSCs), Mø_SPP1, while C2 was characterized with better outcomes, higher metabolism, more benefit from immunotherapy, and displayed active immune with more effectors, e.g., tumour infiltrating lymphocyte and dendritic cell. Moreover, both two single-cell data revealed the crosstalk of SPP1-related L-R pairs between cancer and immune cells, especially SPP1-CD44, might lead to immunosuppression in C1. CONCLUSIONS: The REO-based immuno-prognostic subtypes were conducive to individualized prognosis prediction and treatment options for HCC. This study paved the way for understanding TME heterogeneity between immuno-prognostic subtypes of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Transcriptome , Tumor Microenvironment/genetics , Liver Neoplasms/genetics , Prognosis
2.
Front Microbiol ; 13: 1005201, 2022.
Article in English | MEDLINE | ID: mdl-36406447

ABSTRACT

The gut microbial dysbiosis is a risk of colorectal cancer (CRC) and some bacteria have been reported as potential markers for CRC diagnosis. However, heterogeneity among studies with different populations and technologies lead to inconsistent results. Here, we investigated six metagenomic profiles of stool samples from healthy controls (HC), colorectal adenoma (CA) and CRC, and six and four genera were consistently altered between CRC and HC or CA across populations, respectively. In FengQ cohort, which composed with 61 HC, 47 CA, and 46 CRC samples, a random forest (RF) model composed of the six genera, denoted as signature-HC, distinguished CRC from HC with an area under the curve (AUC) of 0.84. Similarly, another RF model composed of the four universal genera, denoted as signature-CA, discriminated CRC from CA with an AUC of 0.73. These signatures were further validated in five metagenomic sequencing cohorts and six independent 16S rRNA gene sequencing cohorts. Interestingly, three genera overlapped in the two models (Porphyromonas, Parvimonas and Peptostreptococcus) were with very low abundance in HC and CA, but sharply increased in CRC. A concise RF model on the three genera distinguished CRC from HC or CA with AUC of 0.87 and 0.67, respectively. Functional gene family analysis revealed that Kyoto Encyclopedia of Genes and Genomes Orthogroups categories which were significantly correlated with markers in signature-HC and signature-CA were mapped into pathways related to lipopolysaccharide and sulfur metabolism, which might be vital risk factors of CRC development. Conclusively, our study identified universal bacterial markers across populations and technologies as potential aids in non-invasive diagnosis of CRC.

3.
Cancers (Basel) ; 14(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36010950

ABSTRACT

Recurrence is the main factor affecting the prognosis of early hepatocellular carcinoma (HCC), which is not accurately evaluated by clinical indicators. The metabolic heterogeneity of HCC hints at the possibility of constructing a stratification model to predict the clinical outcome. On the basis of the relative expression orderings of 2939 metabolism-related genes, an individualized signature with 10 metabolism-related gene pairs (10-GPS) was developed from 250 early HCC samples in the discovery datasets, which stratified HCC patients into the high- and low-risk subgroups with significantly different survival rates. The 10-GPS was validated in 311 public transcriptomic samples from two independent validation datasets. A nomogram that included the 10-GPS, age, gender, and stage was constructed for eventual clinical evaluation. The low-risk group was characterized by lower proliferation, higher metabolism, increased activated immune microenvironment, and lower TIDE scores, suggesting a better response to immunotherapy. The high-risk group displayed hypomethylation, higher copy number alterations, mutations, and more overexpression of immune-checkpoint genes, which might jointly lead to poor outcomes. The prognostic accuracy of the 10-GPS was further validated in 47 institutional transcriptomic samples and 101 public proteomic samples. In conclusion, the 10-GPS is a robust predictor of the clinical outcome for early HCC patients and could help evaluate prognosis and characterize molecular heterogeneity.

4.
Front Immunol ; 13: 1055412, 2022.
Article in English | MEDLINE | ID: mdl-36713370

ABSTRACT

Background: Medullary thyroid carcinoma (MTC), a thyroid C cell-derived malignancy, is poorly differentiated and more aggressive than papillary, follicular and oncocytic types of thyroid cancer. The current therapeutic options are limited, with a third of population suffering resistance. The differential gene expression pattern among thyroid cancer subtypes remains unclear. This study intended to explore the exclusive gene profile of MTC and construct a comprehensive regulatory network via integrated analysis, to uncover the potential key biomarkers. Methods: Multiple datasets of thyroid and other neuroendocrine tumors were obtained from GEO and TCGA databases. Differentially expressed genes (DEGs) specific in MTC were identified to construct a transcription factor (TF)-mRNA-miRNA network. The impact of the TF-mRNA-miRNA network on tumor immune characteristics and patient survival was further explored by single-sample GSEA (ssGSEA) and ESTIMATE algorithms, as well as univariate combined with multivariate analyses. RT-qPCR, cell viability and apoptosis assays were performed for in vitro validation. Results: We identified 81 genes upregulated and 22 downregulated in MTC but not in other types of thyroid tumor compared to the normal thyroid tissue. According to the L1000CDS2 database, potential targeting drugs were found to reverse the expressions of DEGs, with panobinostat (S1030) validated effective for tumor repression in MTC by in vitro experiments. The 103 DEGs exclusively seen in MTC were involved in signal release, muscle contraction, pathways of neurodegeneration diseases, neurotransmitter activity and related amino acid metabolism, and cAMP pathway. Based on the identified 15 hub genes, a TF-mRNA-miRNA linear network, as well as REST-cored coherent feed-forward loop networks, namely REST-KIF5C-miR-223 and REST-CDK5R2-miR-130a were constructed via online prediction and validation by public datasets and our cohort. Hub-gene, TF and miRNA scores in the TF-mRNA-miRNA network were related to immune score, immune cell infiltration and immunotherapeutic molecules in MTC as well as in neuroendocrine tumor of lung and neuroblastoma. Additionally, a high hub-gene score or a low miRNA score indicated good prognoses of neuroendocrine tumors. Conclusion: The present study uncovers underlying molecular mechanisms and potential immunotherapy-related targets for the pathogenesis and drug discovery of MTC.


Subject(s)
Carcinoma, Neuroendocrine , MicroRNAs , Thyroid Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/genetics , RNA, Messenger/genetics , Gene Expression Profiling , Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/genetics , Thyroid Neoplasms/pathology
5.
Lung Cancer ; 158: 29-39, 2021 08.
Article in English | MEDLINE | ID: mdl-34111567

ABSTRACT

OBJECTIVES: Abnormal expressions of ion channel genes are associated with the occurrence and progression of tumors. At present, their roles in the carcinogenesis of lung adenocarcinoma (LUAD) are not clear. MATERIALS AND METHODS: Differentially expressed (DE) genes in the tumorigenesis were identified from 328 ion channel genes in 102 LUAD and paired adjacent normal samples. Similar analyses were performed between 177 metastatic and 286 non-metastatic LUAD samples to identify DE ion channel genes in the progression of LUAD. Independent prognostic factors selected from DE ion channel genes were used to construct a prognostic model. Correlation analysis and drugs-drug targets interaction network were used to screen the potential drugs for LUAD patients stratified by GJB2 or SCNN1B. RESULTS: Six ion channel genes (GJB2, CACNA1D, KCNQ1, SCNN1B, SCNN1G and TRPV6) were continuous differentially expressed in the tumorigenesis and progression of LUAD. The survival analysis in four datasets with 522 LUAD samples showed that GJB2 and SCNN1B were independent prognostic biomarkers. Patients with overexpression of GJB2 or underexpression of SCNN1B had shorter overall survival. Moreover, multi-omics analysis showed that hypomethylation of GJB2 and hypermethylation of SCNN1B in the promoter region may contribute to their aberrant expressions. KEGG enrichment analysis showed that the overexpressed genes in the group with high GJB2 or low SCNN1B were enriched in cancer-related pathways, while the underexpressed genes were enriched in metabolism-related pathways. The prognostic model with GJB2 and SCNN1B can stratify all LUAD patients into two groups with significantly different survival. Correlation analysis and drugs-drug targets interaction network suggested that GJB2 and SCNN1B expression might have indicative therapeutic values for LUAD patients. Finally, pan-cancer analysis in other eight cancer types showed that GJB2 and SCNN1B might be also potential prognostic factors for KIRC. CONCLUSIONS: GJB2 and SCNN1B were identified as prognostic biomarkers and therapeutic targets for LUAD.


Subject(s)
Adenocarcinoma of Lung , Connexin 26/genetics , Epithelial Sodium Channels/genetics , Lung Neoplasms , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Ion Channels/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...