Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(11): 5020-5033, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38294042

ABSTRACT

Due to the radioactivity of uranium, the discharged nuclear wastewater not only causes certain damage to the ecology, but also causes certain harm to human life and health. Adsorption is considered to be one of the most effective ways to remove uranium. In this paper, a kind of MoS2 adsorbent was prepared by the solid phase synthesis method and functionalized with NiCo-LDH. The raw materials of MoS2 are cheap and easy to obtain, and the preparation conditions are simple, and large quantities can be obtained without limitations. MoS2 functionalized with NiCo-LDH provides more adsorption sites for the adsorbent and at the same time improves the hydrophilicity of the adsorbent, so that the active sites can fully combine with uranyl ions. The maximum adsorption capacity of the Langmuir isothermal adsorption model is 492.83 mg g-1. The selective adsorption capacity of uranium can reach 76.12% in the multi-ion coexistence system. By analyzing the adsorption mechanism with FT-IR and XRD, it is believed that on the one hand, UO22+ forms a covalent bond with Mo in MoS2 and coordinates with S on the surface of MoS2. On the other hand, UO22+ enters the NiCo-LDH layer for ion exchange with NO3- and coordinates with -OH on the surface of NiCo-LDH. The successful preparation of the MoS2/NiCo-LDH composite provides a certain application prospect for the uranium adsorption field.

2.
RSC Adv ; 11(23): 13839-13847, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-35423942

ABSTRACT

Mg-Li based alloys have been widely used in various fields. However, the widespread use of Mg-Li based alloys were restricted by their poor properties. The addition of rare earth element in Mg-Li can significantly improve the properties of alloys. In the present work, different electrochemical methods were used to investigate the electrochemical behavior of Y(iii) on the W electrode in LiCl-KCl melts and LiCl-KCl-MgCl2 melts. In LiCl-KCl melts, typical cyclic voltammetry was used to study the electrochemical mechanism and thermodynamic parameters for the reduction of Y(iii) to metallic Y. In LiCl-KCl-MgCl2 melts, the formation mechanism of Mg-Y intermetallic compounds was investigated, and the results showed that only one kind of Mg-Y intermetallic compound was formed under our experimental conditions. Mg-Li-Y alloys were prepared via galvanostatic electrolysis, and XRD and SEM equipped with EDS analysis were used to analyze the samples. Because of the restrictions of EDS analysis, ICP-AES was used to analyze the Li content in Mg-Li-Y alloys. The microhardness and Young's modulus of the Mg-Li-Y alloys were then evaluated.

SELECTION OF CITATIONS
SEARCH DETAIL
...