Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; : 116372, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885773

ABSTRACT

MicroRNA and mitofusin-2 (Mfn2) play an important role in the myocardial apoptosis induced by acute myocardial infarction (AMI). However, the target relationship and underlying mechanism associated with interorganelle interaction between endoplasmic reticulum (ER) and mitochondria under ischemic condition is not completely clear. MI-induced injury, Mfn2 expression, Mfn2-mediated mitochondrial function and ER stress, and target regulation by miRNA-15b (miR-15b) were evaluated by animal MI and cellular hypoxic models with advanced molecular techniques. The results confirmed that Mfn2 was down-regulated and miR-15b was up-regulated upon the target binding profile under ischemic/hypoxic condition. Our data showed that miR-15b caused cardiac apoptotic injury that was reversed by rAAV9-anti-miR-15b or AMO-15b. The damage effect of miR-15b on Mfn2 expression and mitochondrial function was observed and rescued by rAAV9-anti-miR-15b or AMO-15b. The targeted regulation of miR-15b on Mfn2 was verified by luciferase reporter and microRNA-masking. Importantly, miR-15b-mediated Mfn2 suppression activated PERK/CHOP pathway, by which leads to ER stress and mitochondrial dysfunction, and cardiac apoptosis eventually. In conclusion, our research, for the first time, revealed the missing molecular link in Mfn2 and apoptosis and elucidated that pro-apoptotic miR-15b plays crucial roles during the pathogenesis of AMI through down-regulation of Mfn2 and activation of PERK-mediated ER stress. These findings may provide an opportunity to develop new therapies for prophylaxis and treatment of ischemic heart disease.

2.
Acta Pharmacol Sin ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760544

ABSTRACT

Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-ß1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/ß-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.

3.
Biotechnol Bioeng ; 119(7): 1916-1925, 2022 07.
Article in English | MEDLINE | ID: mdl-35312063

ABSTRACT

Baicalein is a bioactive flavonoid isolated from the traditional Chinese medicinal plant, Scutellaria baicalensis Georgi. Microbial synthesis of flavonoids has been intensively developed owing to the eco-friendly nature of the process. However, the titer of the flavonoids obtained is still at a low level, and effective methods to enhance these titers are lacking. In this study, the synthetic performance of baicalein-producing engineered Escherichia coli was rationally evaluated to enhance the expression of key enzymes. Transcriptional analyses of baicalein-overproducing strain and a control strain enabled the identification of 13 beneficial genes, including eight genes that are seemingly irrelevant to baicalein metabolism. With the combination of the enzyme assembly and modularization strategy, the engineered DN-8 strain produced 367.8 mg/L baicalein in fed-batch fermentation, the maximum titer reported to date.


Subject(s)
Escherichia coli , Flavanones , Escherichia coli/genetics , Escherichia coli/metabolism , Flavanones/metabolism , Flavonoids/metabolism , Scutellaria baicalensis/genetics , Scutellaria baicalensis/metabolism
4.
Metab Eng Commun ; 13: e00185, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34631421

ABSTRACT

5-Deoxy(iso)flavonoids are structural representatives of phenylpropanoid-derived compounds and play critical roles in plant ecophysiology. Recently, 5-deoxy(iso)flavonoids gained significant interest due to their potential applications as pharmaceuticals, nutraceuticals, and food additives. Given the difficulties in their isolation from native plant sources, engineered biosynthesis of 5-deoxy(iso)flavonoids in a microbial host is a highly promising alternative approach. However, the production of 5-deoxy(iso)flavonoids is hindered by metabolic flux imbalances that result in a product profile predominated by non-reduced analogues. In this study, GmCHS7 (chalcone synthase from Glycine max) and GuCHR (chalcone reductase from Glycyrrhizza uralensis) were preliminarily utilized to improve the CHR ratio (CHR product to total CHS product). The use of this enzyme combination improved the final CHR ratio from 39.7% to 50.3%. For further optimization, a protein-protein interaction strategy was employed, basing on the spatial adhesion of GmCHS7:PDZ and GuCHR:PDZlig. This strategy further increased the ratio towards the CHR-derived product (54.7%), suggesting partial success of redirecting metabolic flux towards the reduced branch. To further increase the total carbon metabolic flux, 15 protein scaffolds were programmed with stoichiometric arrangement of the three sequential catalysts GmCHS7, GuCHR and MsCHI (chalcone isomerase from Medicago sativa), resulting in a 1.4-fold increase in total flavanone production, from 69.4 mg/L to 97.0 mg/L in shake flasks. The protein self-assembly strategy also improved the production and direction of the lineage-specific compounds 7,4'-dihydroxyflavone and daidzein in Escherichia coli. This study presents a significant advancement of 5-deoxy(iso)flavonoid production and provides the foundation for production of value-added 5-deoxy(iso)flavonoids in microbial hosts.

5.
ACS Synth Biol ; 10(5): 1087-1094, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33880917

ABSTRACT

Baicalein and scutellarein are bioactive flavonoids isolated from the traditional Chinese medicine Scutellaria baicalensis Georgi; however, there is a lack of effective strategies for producing baicalein and scutellarein. In this study, we developed a sequential self-assembly enzyme reactor involving two enzymes in the baicalein pathway with a pair of protein-peptide interactions in E. coli. These domains enabled us to optimize the stoichiometry of two baicalein biosynthetic enzymes recruited to be an enzymes complex. This strategy reduces the accumulation of intermediates and removes the pathway bottleneck. With this strategy, we successfully promoted the titer of baicalein by 6.6-fold (from 21.6 to 143.5 mg/L) and that of scutellarein by 1.4-fold (from 84.3 to 120.4 mg/L) in a flask fermentation, respectively. Furthermore, we first achieved the de novo biosynthesis of baicalein directly from glucose, and the strain was capable of producing 214.1 mg/L baicalein by fed-batch fermentation. This work provides novel insights for future optimization and large-scale fermentation of baicalein and scutellarein.


Subject(s)
Apigenin/biosynthesis , Bioreactors , Drugs, Chinese Herbal/metabolism , Escherichia coli/metabolism , Flavanones/biosynthesis , Metabolic Engineering/methods , Plant Extracts/biosynthesis , Batch Cell Culture Techniques/methods , Escherichia coli/genetics , Fermentation , Glucose/metabolism , Malonyl Coenzyme A/metabolism , Microorganisms, Genetically-Modified , PDZ Domains , Phenylalanine Ammonia-Lyase/chemistry , Phenylalanine Ammonia-Lyase/metabolism , Scutellaria baicalensis , Sirolimus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...