Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 268(Pt 1): 131659, 2024 May.
Article in English | MEDLINE | ID: mdl-38641275

ABSTRACT

As the most abundant natural homo-polymer, cellulose has the potential to enhance polymer properties reducing the cost of raw materials. In this work, the carboxylate cellulose nanofiber (CNF-C) was selected to modify polylactic acid (PLA) foams, and the density functional theory was constructed to help analyze the foaming mechanism quantitatively. The theoretical results showed that the ordered structure, the carboxyl and the hydroxyl of CNF-C were more conducive to providing much stronger CO2 adsorption for bubble nucleation, where the predicted critical bubble size decreased and the cell density increased with the addition of CNF-C. The experimental results revealed that the CNF-C promoted the rheological properties and crystallization behaviors of PLA samples, the PLA/CNF-C foams were characterized with uniform structures, the average cell size decreased from 21.39 µm to 0.19 µm, and the cell number density increased from 2.65×1010cell/cm3 to 2.30×1014cell/cm3. Those improvements resulted in an increase of 394.0 % for the compressive strength of the prepared foams. Generally, the high-performance PLA/CNF-C foams were fabricated successfully without compromising the properties of bio-based and biodegradable, the foaming mechanism was analyzed combining theoretical results with experimental data, and it was believed to provide a guide for cellulose reinforcing biodegradable polymer materials.


Subject(s)
Cellulose , Nanofibers , Polyesters , Cellulose/chemistry , Polyesters/chemistry , Nanofibers/chemistry , Rheology , Carbon Dioxide/chemistry , Surface Properties , Crystallization , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL
...