Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 372: 16-26, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29294338

ABSTRACT

Vulvodynia is a prevalent chronic pain disorder associated with high medical costs and often ineffective treatments. The major pathological feature is proliferation of vaginal nerve fibers. This study aimed to develop a highly reproducible animal model to study neuroproliferation in the vagina and aid the identification of appropriately targeted treatments for conditions such as vulvodynia. Mild chronic inflammation was induced using microinjection of complete Freund's adjuvant in the distal vagina of C57Bl/6 mice. Control mice received saline. Inflammation and innervation density were assessed at 7 and 28 days after a single administration or 14 days following repeated administration of complete Freund's adjuvant or saline. Histochemistry and blinded-analysis of images were used to assess vaginal morphology (H & E) and abundance of macrophages (CD68-labeling), mast cells (toluidine blue staining, mast cell tryptase-immunoreactivity), blood vessels (αSMA-immunoreactivity) and nerve fibers immunoreactive for the pan-neuronal marker PGP9.5. Subpopulations of nerve fibers were identified using immunoreactivity for calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP) and neuropeptide Y (NPY). Single administration of complete Freund's adjuvant resulted in vaginal swelling, macrophage infiltration, vascular proliferation and increased abundance of nerve fibers immunoreactive for CGRP, SP, VIP and/or PGP9.5 but not NPY, evident at seven days. Inflammation further increased following repeated administration of complete Freund's adjuvant but nerve fiber proliferation did not. Nerve fiber proliferation continued to be evident at 28 days. The inter-individual differences within each treatment group were small, indicating that this model may be useful to study mechanisms underlying vaginal nerve fiber proliferation associated with inflammation.


Subject(s)
Inflammation/physiopathology , Vagina/immunology , Vagina/innervation , Animals , Calcitonin Gene-Related Peptide/metabolism , Edema/immunology , Edema/pathology , Female , Freund's Adjuvant , Inflammation/pathology , Mice, Inbred C57BL , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Nerve Fibers/immunology , Nerve Fibers/pathology , Substance P/metabolism , Time Factors , Vagina/blood supply , Vagina/pathology , Vasoactive Intestinal Peptide/metabolism
2.
Neurourol Urodyn ; 37(3): 960-970, 2018 03.
Article in English | MEDLINE | ID: mdl-29053899

ABSTRACT

BACKGROUND: Peptidergic nerve fibers provide important contributions to urethral function. Urethral innervation of female mice is not well documented. AIMS: To determine the distribution and projection sites of nerve fibers immunoreactive for vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), substance P (SP), and neuropeptide Y (NPY) in the urethra of wild-type control mice and compare innervation characteristics between the proximal and distal urethra of young nullipara and older multipara mice. Furthermore, to identify the location and neurochemical coding of the spinal afferent nerve endings in the urethra, whose sensory neurons reside in lumbosacral dorsal root ganglia (DRG). METHODS: Multiple labeling immunohistochemistry of urethral sections of nulliparous (6-8 weeks old), and multiparous (9-12 months old) mice, and anterograde axonal tracing from L5-S2 (DRG) in vivo. RESULTS: Abundant VIP-, CGRP-, SP-, and NPY-immunoreactive nerve fibers were identified in the adventitia, muscularis, and lamina propria of proximal and distal segments of the urethra. A proportion of fibers were closely associated with blood vessels, glands, and cells immunoreactive for PGP9.5. The epithelium contained abundant nerve fibers immunoreactive for CGRP and/or SP. Epithelial innervation was increased in the distal urethra of multipara mice. Abundant fibers were traced from L5-S2 DRG to all urethral regions. CONCLUSIONS: We present the first identification of spinal afferent endings in the urethra. Peptidergic nerve fibers, including multiple populations of spinal afferents, provide rich innervation of the female mouse urethra. The morphology of fibers in the epithelium and other regions suggests multiple nerve-cell interactions impacting on urethral function.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Nerve Fibers/metabolism , Neuropeptide Y/metabolism , Substance P/metabolism , Urethra/innervation , Vasoactive Intestinal Peptide/metabolism , Animals , Female , Ganglia, Spinal/metabolism , Immunohistochemistry , Mice , Urethra/metabolism
3.
J Comp Neurol ; 525(10): 2394-2410, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28324630

ABSTRACT

The vagina is innervated by a complex arrangement of sensory, sympathetic, and parasympathetic nerve fibers that contain classical transmitters plus an array of neuropeptides and enzymes known to regulate diverse processes including blood flow and nociception. The neurochemical characteristics and distributions of peptide-containing nerves in the mouse vagina are unknown. This study used multiple labeling immunohistochemistry, confocal maging and analysis to investigate the presence and colocalization of the peptides vasoactive intestinal polypeptide (VIP), calcitonin-gene related peptide (CGRP), substance P (SP), neuropeptide tyrosine (NPY), and the nitric oxide synthesizing enzyme neuronal nitric oxide synthase (nNOS) in nerve fibers of the murine vaginal wall. We compared cervical and vulvar areas of the vagina in young nullipara and older multipara C57Bl/6 mice, and identified differences including that small ganglia were restricted to cervical segments, epithelial fibers were mainly present in vulvar segments and most nerve fibers were found in the lamina propria of the cervical region of the vagina, where a higher number of fibers containing immunoreactivity for VIP, CGRP, SP, or nNOS were found. Two populations of VIP-containing fibers were identified: fibers containing CGRP and fibers containing VIP but not CGRP. Differences between young and older mice were present in multiple layers of the vaginal wall, with older mice showing overall loss of innervation of epithelium of the proximal vagina and reduced proportions of VIP, CGRP, and SP containing nerve fibers in the distal epithelium. The distal vagina also showed increased vascularization and perivascular fibers containing NPY. Immunolabeling of ganglia associated with the vagina indicated the likely origin of some peptidergic fibers. Our results reveal regional differences and age- or parity-related changes in innervation of the mouse vagina, effecting the distribution of neuropeptides with diverse roles in function of the female genital tract.


Subject(s)
Calcitonin Gene-Related Peptide/analysis , Nerve Fibers/chemistry , Neuropeptide Y/analysis , Substance P/analysis , Vagina/chemistry , Vasoactive Intestinal Peptide/analysis , Animals , Calcitonin Gene-Related Peptide/metabolism , Female , Mice , Mice, Inbred C57BL , Nerve Fibers/metabolism , Neuropeptide Y/metabolism , Nitric Oxide Synthase Type I/analysis , Nitric Oxide Synthase Type I/metabolism , Substance P/metabolism , Vagina/cytology , Vagina/metabolism , Vasoactive Intestinal Peptide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...