Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Sci Food Agric ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895880

ABSTRACT

BACKGROUND: Recent studies have shown that the wettability of protein-based emulsifiers is critical for emulsion stability. However, few studies have been conducted to investigate the effects of varying epigallocatechin gallate (EGCG) concentrations on the wettability of protein-based emulsifiers. Additionally, limited studies have examined the effectiveness of soy protein-EGCG covalent complex nanoparticles with improved wettability as emulsifiers for stabilizing high-oil-phase (≥ 30%) curcumin emulsions. RESULTS: Soy protein isolate (SPI)-EGCG complex nanoparticles (SPIEn) with improved wettability were fabricated to stabilize high-oil-phase curcumin emulsions. The results showed that EGCG forms covalent bonds with SPI, which changes its secondary structure, enhances its surface charge, and improves its wettability. Moreover, SPIEn with 2.0 g L -1 EGCG (SPIEn-2.0) exhibited a better three-phase contact angle (56.8 ± 0.3o) and zeta potential (-27 mV) than SPI. SPIEn-2.0 also facilitated the development of curcumin emulsion gels at an oil volume fraction of 0.5. Specifically, the enhanced network between droplets as a result of the packing effects and SPIEn-2.0 with inherent antioxidant function was more effective at inhibiting curcumin degradation during long-term storage and ultraviolet light exposure. CONCLUSION: The results of the present study indicate that SPIEn with 2.0 g L -1 EGCG (SPIEn-2.0) comprises the optimum conditions for fabricating emulsifiers with improved wettability. Additionally, SPIEn-0.2 can improve the physicochemical stability of high-oil-phase curcumin emulsions, suggesting a novel strategy to design and fabricate high-oil-phase emulsion for encapsulating bioactive compounds. © 2024 Society of Chemical Industry.

2.
J Sci Food Agric ; 104(4): 2467-2476, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37986244

ABSTRACT

BACKGROUND: The application of curcumin (Cur) in the food industry is usually limited by its low water solubility and poor stability. This study aimed to fabricate self-assembled nanoparticles using pea vicilin (7S) through a pH-shifting method (pH 7-pH 12-pH 7) to develop water-soluble nanocarriers of Cur. RESULTS: Intrinsic fluorescence, far-UV circular dichroism spectra and transmission electron microscopy analysis demonstrated that the structure of 7S could be unfolded at pH 12.0 and refolded when the pH shifted to 7.0. The assembled 7S-Cur exhibited a high loading ability of 81.63 µg mg-1 for Cur and homogeneous particle distribution. Cur was encapsulated in the 7S hydrophobic nucleus in an amorphous form and combined through hydrophobic interactions and hydrogen bonding, resulting in the static fluorescence quenching of 7S. Compared with free Cur, the retention rates of Cur in 7S-Cur were approximately 1.12 and 1.70 times higher under UV exposure at 365 nm or heating at 75 °C for 120 min, respectively, as well as 7S-Cur showing approximately 1.50 times higher antioxidant activity. During simulated gastrointestinal experiments, 7S-Cur exhibited a better sustained-release property than free Cur. CONCLUSION: The self-assembled 7S nanocarriers prepared using a pH-shifting method effectively improved the antioxidant activity, environmental stability and sustained-release property of Cur. Therefore, 7S isolated from pea protein could be used as potential nanocarriers for Cur. © 2023 Society of Chemical Industry.


Subject(s)
Curcumin , Nanoparticles , Seed Storage Proteins , Curcumin/chemistry , Antioxidants , Pisum sativum , Delayed-Action Preparations , Drug Carriers/chemistry , Nanoparticles/chemistry , Water , Particle Size
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(6): 1146-1153, 2023 Nov 20.
Article in Chinese | MEDLINE | ID: mdl-38162062

ABSTRACT

Objective: To predict the intervention targets of empagliflozin (EMPA), a specific inhibitor of sodium-glucose cotransporter 2 (SGLT2), in gastric adenocarcinoma through comprehensive network pharmacology, and to validate the effects and the molecular mechanisms of EMPA through cellular and molecular biology experiments. Methods: Bioinformatics analysis of gastric adenocarcinoma was conducted to assess the correlation between gastric adenocarcinoma prognosis and SGLT2 expression. Network pharmacology was utilized to identify shared targets of EMPA and gastric adenocarcinoma. AGS cells, a human gastric adenocarcinoma cells line, were incubated with EMPA at different concentrations for 24 h and, then, cell proliferation was assessed using the CCK8 assay. After AGS cells were incubated with EMPA at the doses of 0, 3, and 6 mmol/L, real-time cell analysis (RTCA) and 5-ethynyl-2-deoxyuridine (EdU) incorporation were used to evaluate EMPA's inhibitory effects on the proliferation of the AGS cells. In addition, wound healing and Transwell assays were performed to assess the inhibitory effect of EMPA on the migration and invasion of the APC cells and Western blot analysis was conducted to examine the expression of mammalian target of rapamycin (mTOR) and phosphorylated mTOR (p-mTOR). BALB/c (nu/nu) nude mice were implanted with 5×106 AGS cells in the axilla. The mice were divided into three groups, a control group, a low-dose group, and a high-dose group, each consisting of 7 mice. After one week, the control group received daily intraperitoneal injections of normal saline, while the low-dose group and high-dose group received daily intraperitoneal injections of EMPA at the doses of 3 mg/kg and 5 mg/kg, respectively. The tumor volume was measured one week after the drug intervention started. Results: Gastric adenocarcinoma patients with low expression of SGLT2 exhibited longer survival time and higher survival rate than those with high expression of SGLT2 did. A total of 104 EMPA-related potential targets and 2028 targets associated with gastric adenocarcinoma were identified. Among these, 45 targets associated with gastric adenocarcinoma overlapped with potential targets of EMPA. Further analysis revealed 10 relevant pathways and 4 core genes. The core genes were cyclin-dependent kinase 4 (CDK4), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), mTOR, and cyclin E1 (CCNE1). CCK-8 assay revealed that EMPA at concentrations ranging from 0.39 to 50 mmol/L effectively inhibited the proliferation of AGS cells. RTCA results indicated a downward shift in the cell growth curve. In comparison to the findings for the control group, EdU assay demonstrated that EMPA at the concentrations of 3 mmol/L and 6 mmol/L significantly inhibited AGS cell proliferation (P<0.05). Results from wound healing and Transwell assays indicated a decrease in the levels of cell migration and invasion (P<0.05) and, notably, there was a significant difference between the high and low-dose EMPA groups (P<0.05). Western blot showed no statistically significant difference in the expression of total mTOR protein between the groups. However, the expression of p-mTOR in the 3 mmol/L and 6 mmol/L EMPA groups decreased compared to that of the control group (P<0.05), with the 6 mmol/L EMPA group exhibiting a more pronounced reduction (P<0.05). Nude mice xenograft tumor experiment demonstrated that, compared to that of the control group, the tumor volumes in the EMPA-treatment groups were significantly reduced (P<0.05), with the high-dose group showing a more pronounced reduction (P<0.05). Conclusion: EMPA inhibits the abnormal proliferation and migration of gastric adenocarcinoma cells, potentially through the modulation of mTOR protein activation. This study provides new potential medication and intervention targets for gastric adenocarcinoma treatment.


Subject(s)
Adenocarcinoma , Sodium-Glucose Transporter 2 Inhibitors , Stomach Neoplasms , TOR Serine-Threonine Kinases , Animals , Humans , Mice , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Cell Line, Tumor , Cell Proliferation , Mice, Nude , Signal Transduction , Sirolimus/pharmacology , Sodium-Glucose Transporter 2/metabolism , Stomach Neoplasms/metabolism , TOR Serine-Threonine Kinases/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
4.
Foods ; 11(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36429295

ABSTRACT

In this study, soy ß-conglycinin (7S) was glycated with dextran of different molecular masses (40, 70, 150, 500 kDa) by the dry-heating method to synthesize soy ß-conglycinin-dextran (7S-DEX) conjugates. The curcumin (Cur) loaded nanocomplexes were prepared based on 7S-DEX conjugates by a pH-driven self-assemble strategy to enhance the solubility and thermal stability of curcumin. Results showed that the 7S-150 conjugates (glycated from 7S with dextran (150 kDa)) could remain stable in the pH 3.0-pH 8.0 range and during the heat treatment. The results of fluorescence quenching and FT-IR indicated that glycated 7S were combined with curcumin mainly by hydrogen bonding and hydrophobic interaction, and 7S-150 conjugates had higher binding affinity than natural 7S for curcumin. The loading capacity (µg/mg) and encapsulation efficiency (EE%) of 7S-150-Cur were 16.06 µg/mg and 87.51%, respectively, significantly higher than that of 7S-Cur (12.41 µg/mg, 51.15%). The XRD spectrum showed that curcumin was exhibited in an amorphous state within the 7S-150-Cur nanocomplexes. After heating at 65 °C for 30 min, the curcumin retention of the 7S-150-Cur nanocomplexes was about 1.4 times higher than that of free curcumin. The particle size of 7S-150-Cur nanocomplexes was stable (in the range of 10-100 nm) during the long storage time (21 days).

5.
Food Chem ; 395: 133562, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35763923

ABSTRACT

In this study, glycated soy ß-conglycinin (ß-CG) stabilized curcumin (Cur) composites were fabricated by a unique reversible self-assembly character of ß-conglycinin-dextran conjugates (ß-CG-DEX). Intrinsic fluorescence and far-UV CD spectra revealed that glycation did not affect the self-assembly property of ß-CG in the pH-shifting treatment. The structure of ß-CG-DEX could be unfolded at pH 12.0 and reassembled during acidification (from pH 12.0 to 7.0). Meanwhile, ß-CG-DEX-3d, which was incubated at 60 °C for 3 days, exhibited a high loading capacity (123.4 mg/g) for curcumin, which far exceeds that (74.90 mg/g) of ß-CG-Cur. Moreover, the reassembled ß-CG-DEX-3d-Cur showed eminent antioxidant activity of approximately 1.5 times higher than that of free curcumin. During the simulated gastrointestinal condition, compared with ß-CG-Cur, ß-CG-DEX-3d-Cur nanoparticles showed a more stable and sustained release of curcumin. Thus, ß-CG-DEX has immense potential to become a new delivery carrier for hydrophobic food components by means of a self-assembly strategy.


Subject(s)
Curcumin , Nanoparticles , Antigens, Plant , Antioxidants/chemistry , Curcumin/chemistry , Delayed-Action Preparations , Dextrans/chemistry , Drug Carriers/chemistry , Globulins , Nanoparticles/chemistry , Particle Size , Polyphenols , Seed Storage Proteins , Soybean Proteins
6.
BMC Pulm Med ; 21(1): 420, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34923982

ABSTRACT

BACKGROUND: In recent years, immunotherapies and targeted therapies contribute to population-level improvement in NSCLC cancer-specific survival, however, the two novel therapeutic options have mainly benefit patients containing mutated driven genes. Thus, to explore other potential genes related with immunity or targeted therapies may provide novel options to improve survival of lung cancer patients without mutated driven genes. CTSF is unique in human cysteine proteinases. Presently, CTSF has been detected in several cell lines of lung cancer, but its role in progression and prognosis of lung cancer remains unclear. METHODS: CTSF expression and clinical datasets of lung cancer patients were obtained from GTEx, TIMER, CCLE, THPA, and TCGA, respectively. Association of CTSF expression with clinicopathological parameters and prognosis of lung cancer patients was analyzed using UALCAN and Kaplan-Meier Plotter, respectively. LinkedOmics were used to analyze correlation between CTSF and CTSF co-expressed genes. Protein-protein interaction and gene-gene interaction were analyzed using STRING and GeneMANIA, respectively. Association of CTSF with molecular markers of immune cells and immunomodulators was analyzed with Immunedeconv and TISIDB, respectively. RESULTS: CTSF expression was currently only available for patients with NSCLC. Compared to normal tissues, CTSF was downregulated in NSCLC samples and high expressed CTSF was correlated with favorable prognosis of NSCLC. Additionally, CTSF expression was correlated with that of immune cell molecular markers and immunomodulators both in LUAD and LUSC. Noticeably, high expression of CTSF-related CTLA-4 was found to be associated with better OS of LUAD patients. Increased expression of CTSF-related LAG-3 was related with poor prognosis of LUAD patients while there was no association between CTSF-related PD-1/PD-L1 and prognosis of LUAD patients. Moreover, increased expression of CTSF-related CD27 was related with poor prognosis of LUAD patients while favorable prognosis of LUSC patients. CONCLUSIONS: CTSF might play an anti-tumor effect via regulating immune response of NSCLC.


Subject(s)
CTLA-4 Antigen , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Cathepsin F , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Biomarkers, Tumor , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Cathepsin F/genetics , Cathepsin F/immunology , Computational Biology , Databases, Genetic , Down-Regulation , Epistasis, Genetic , Humans , Lung Neoplasms/pathology , Prognosis
7.
Mil Med Res ; 8(1): 57, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34724985

ABSTRACT

BACKGROUND: Mitochondria have been shown to play vital roles during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) development. Currently, it is unclear whether mitochondrial DNA (mtDNA) variants, which define mtDNA haplogroups and determine oxidative phosphorylation performance and reactive oxygen species production, are associated with COVID-19 risk. METHODS: A population-based case-control study was conducted to compare the distribution of mtDNA variations defining mtDNA haplogroups between healthy controls (n = 615) and COVID-19 patients (n = 536). COVID-19 patients were diagnosed based on molecular diagnostics of the viral genome by qPCR and chest X-ray or computed tomography scanning. The exclusion criteria for the healthy controls were any history of disease in the month preceding the study assessment. MtDNA variants defining mtDNA haplogroups were identified by PCR-RFLPs and HVS-I sequencing and determined based on mtDNA phylogenetic analysis using Mitomap Phylogeny. Student's t-test was used for continuous variables, and Pearson's chi-squared test or Fisher's exact test was used for categorical variables. To assess the independent effect of each mtDNA variant defining mtDNA haplogroups, multivariate logistic regression analyses were performed to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) with adjustments for possible confounding factors of age, sex, smoking and diseases (including cardiopulmonary diseases, diabetes, obesity and hypertension) as determined through clinical and radiographic examinations. RESULTS: Multivariate logistic regression analyses revealed that the most common investigated mtDNA variations (> 10% in the control population) at C5178a (in NADH dehydrogenase subunit 2 gene, ND2) and A249d (in the displacement loop region, D-loop)/T6392C (in cytochrome c oxidase I gene, CO1)/G10310A (in ND3) were associated with a reduced risk of severe COVID-19 (OR = 0.590, 95% CI 0.428-0.814, P = 0.001; and OR = 0.654, 95% CI 0.457-0.936, P = 0.020, respectively), while A4833G (ND2), A4715G (ND2), T3394C (ND1) and G5417A (ND2)/C16257a (D-loop)/C16261T (D-loop) were related to an increased risk of severe COVID-19 (OR = 2.336, 95% CI 1.179-4.608, P = 0.015; OR = 2.033, 95% CI 1.242-3.322, P = 0.005; OR = 3.040, 95% CI 1.522-6.061, P = 0.002; and OR = 2.890, 95% CI 1.199-6.993, P = 0.018, respectively). CONCLUSIONS: This is the first study to explore the association of mtDNA variants with individual's risk of developing severe COVID-19. Based on the case-control study, we concluded that the common mtDNA variants at C5178a and A249d/T6392C/G10310A might contribute to an individual's resistance to developing severe COVID-19, whereas A4833G, A4715G, T3394C and G5417A/C16257a/C16261T might increase an individual's risk of developing severe COVID-19.


Subject(s)
COVID-19 , DNA, Mitochondrial , COVID-19/genetics , Case-Control Studies , China , DNA, Mitochondrial/genetics , Humans , Mitochondria/genetics , Phylogeny , Risk Factors
8.
J Food Sci ; 86(6): 2387-2397, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34018189

ABSTRACT

Gelation properties of myofibrillar protein (MP)/wheat gluten (WG) induced by glutamine transaminase (TGase) were studied. Results showed that the inclusion of transglutaminase increased the gel strength, water-holding capacity (WHC), and nonfreezable water (Wnf) of MP/WG mixture. Circular dichroism (CD) analysis showed that the ß-sheet and random coil content of the MP/WG treated with TGase addition increased by 12.1% and 3.7%, while the α-helix and ß-turn content decreased by 14.2% and 1.8%. Rheological measurements showed that TGase induced higher energy storage modulus value during the MP/WG gel heating-cooling cycle. the hydrogen bond and hydrophobic interaction content of the MP/WG gels increased by 80 and 120 ug/L, and the disulfide bond decreased by 200 ug/L, with TGase addition was increased from 0 to 120 U/g protein. Scanning electron microscope (SEM) showed that MP/WG gel with TGase had uniform and dense network structure. PRACTICAL APPLICATION: The properties of myofibrillar/wheat gluten gel induced by TGase crosslinking was studied. The gel structure and water holding capacity of MP/WG were improved by the cross-linking of TGase. The study of the gel properties of MP/WG induced by TGase crosslinking also can provide a theoretical basis for analyzing the effect of TGase on the application of gluten protein in complex meat emulsion system.


Subject(s)
Gels/chemistry , Glutens/chemistry , Myofibrils/metabolism , Rheology , Transglutaminases/pharmacology , Triticum/chemistry , Glutens/drug effects , Glutens/metabolism , Hydrophobic and Hydrophilic Interactions , Myofibrils/drug effects , Triticum/drug effects , Triticum/metabolism
9.
Cell Prolif ; 53(11): e12924, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33078469

ABSTRACT

OBJECTIVES: Chemoresistance induced by cisplatin has become the major impediment to lung cancer chemotherapy. This study explored the potential chemoresistant genes and underlying mechanisms of chemoresistance in NSCLC. MATERIALS AND METHODS: Gene expression profile was integrated with DNA methylation profile to screen the candidate chemoresistant genes. Bioinformatic analysis and immunohistochemistry were used to analyse the association of a candidate gene with the characteristics of NSCLC patients. Recombinant lentivirus vectors were utilized to overexpress or silence candidate gene. Microarrays and immunoblotting were applied to explore the downstream targets of candidate gene. Xenograft models were established to validate the findings in vitro. RESULTS: An increased ZNF300 expression was detected in three chemoresistant cell lines of NSCLC, and the higher expression of ZNF300 was associated with poor OS of NSCLC patients. Cells with upregulated ZNF300 presented chemoresistance and enhanced aggressive growth compared to cells with downregulated ZNF300. ZNF300 inhibited MAPK/ERK pathways and activated CDK1 through inhibiting WEE1 and MYT1 and modulating MYC/AURKA/BORA/PLK1 axis. ICA and ATRA improved the anti-tumour effect of cisplatin on chemoresistant cells by inducing differentiation. CONCLUSIONS: ZNF300 promotes chemoresistance and aggressive behaviour of NSCLC through regulation of proliferation and differentiation by downregulating MAPK/ERK pathways and regulation of slow-cycling phenotype via activating CDK1 by inhibiting WEE1/MYT1 and modulating MYC/AURKA/BORA/PLK1 axis. Cisplatin, combined with ATRA and ICA, might be beneficial in chemoresistant cases of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm , Lung Neoplasms/genetics , Repressor Proteins/genetics , Transcriptome , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , DNA Methylation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice, Inbred BALB C , Middle Aged , Repressor Proteins/metabolism , Signal Transduction/drug effects , Transcriptome/drug effects
10.
Food Chem Toxicol ; 135: 110933, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31682930

ABSTRACT

Chelerythrine (CHE), a benzophenanthridine alkaloid, is usually used as a nutritional and functional additive in variety of health foods. However, it should be paid enough attention because of its potential toxicity to human health. In this work, the binding mechanism of CHE with bovine serum albumin (BSA) was systematically investigated with spectroscopic approaches. The results showed that the mixture of BSA with CHE could spontaneously cause the formation of BSA-CHE complex through electrostatic interaction under simulative physiological conditions (0.01 mol L-1 Tris-HCl, 0.015 mol L-1 NaCl, pH = 7.4). Site marker competitive displacement experiments exhibited that CHE was primarily bound to the hydrophobic pocket of the site II (subdomain IIIA) of BSA. It has been reported that the binding of small functional molecules to serum albumins remarkably impacts their absorption, distribution, metabolism, conformation, and excretion features. Therefore, this study might be helpful for human to have an in-depth understanding of the biological effect of CHE in vivo and guide human to take it safely and reasonably.


Subject(s)
Benzophenanthridines/metabolism , Serum Albumin, Bovine/metabolism , Animals , Binding Sites , Cattle , Circular Dichroism , Protein Binding , Protein Conformation, alpha-Helical/drug effects , Spectrometry, Fluorescence , Thermodynamics
11.
Mediators Inflamm ; 2018: 1739615, 2018.
Article in English | MEDLINE | ID: mdl-30008611

ABSTRACT

To investigate the predictive value of the acute physiology and chronic health evaluation 2 (APACHE2) score and lung injury prediction score (LIPS) for acute respiratory distress syndrome (ARDS) when combined with biomarkers for this condition in patients with ARDS risk factors. In total, 158 Han Chinese patients with ARDS risk factors were recruited from the Respiratory and Emergency Intensive Care Units. The LIPS, APACHE2 score, primary diagnosis at admission, and ARDS risk factors were determined within 6 h of admission, and PaO2/FiO2 was determined on the day of admission. Blood was collected within 24 h of admission for the measurement of angiopoietin-2 (ANG-2), sE-selectin, interleukin-6 (IL-6), and interleukin-8 (IL-8) levels. ARDS was monitored for the next 7 days. Univariate and multivariate analyses and receiver operating characteristic (ROC) analyses were employed to construct a model for ARDS prediction. Forty-eight patients developed ARDS within 7 days of admission. Plasma ANG-2 level, sE-selectin level, LIPS, and APACHE2 score in ARDS patients were significantly higher than those in non-ARDS patients. ANG-2 level, LIPS, and APACHE2 score were correlated with ARDS (P < 0.001, P < 0.006, and P < 0.042, resp.). When the APACHE2 score was used in combination with the LIPS and ANG-2 level to predict ARDS, the area under the ROC curve (AUC) was not significantly increased. Compared to LIPS or ANG-2 alone, LIPS in combination with ANG-2 had significantly increased positive predictive value (PPV) and AUC for the prediction of ARDS. In conclusion, plasma ANG-2 level, LIPS, and APACHE2 score are correlated with ARDS. Combined LIPS and ANG-2 level displays favorable sensitivity, specificity, and AUC for the prediction of ARDS.


Subject(s)
Angiopoietin-2/blood , Lung Injury/blood , Respiratory Distress Syndrome/blood , APACHE , Adult , Aged , Biomarkers/blood , China , Critical Illness , E-Selectin/blood , False Positive Reactions , Female , Humans , Interleukin-6/blood , Interleukin-8/blood , Lung Injury/diagnosis , Male , Middle Aged , Prospective Studies , ROC Curve , Respiratory Distress Syndrome/diagnosis , Risk Factors , Severity of Illness Index , Time Factors , Treatment Outcome
12.
Int J Clin Exp Pathol ; 11(6): 3019-3025, 2018.
Article in English | MEDLINE | ID: mdl-31938427

ABSTRACT

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-associated deaths, worldwide, and its prognosis is unfavorable. The aim of this study was to detect serum miR-101 levels in NSCLC patients and investigate its potential diagnostic and prognostic value. A total of 93 patients with NSCLC, 40 cases with various benign lung disease, and 55 healthy volunteers, were enrolled. Quantitative RT-PCR was performed to determine relative serum miR-101 levels in our participants. Decreased serum miR-101 expression was observed in patients with NSCLC and was closely associated with aggressive clinical characteristics. In addition, a significant increase in serum miR-101 levels was found in 36 NSCLC cases after tumor resection. Moreover, receiver-operating characteristic (ROC) curve analysis showed that serum miR-101 was an effective indicator for NSCLC diagnosis. Furthermore, Kaplan-Meier survival curve analysis revealed that low serum miR-101 expression predicted poor overall survival and disease-free survival. Finally, multivariate analysis confirmed serum miR-101 expression was an independent prognostic factor for NSCLC patients. In conclusion, serum miR-101 might serve as a potential biomarker for detection and prognosis evaluation of NSCLC.

13.
Cell Physiol Biochem ; 43(2): 465-480, 2017.
Article in English | MEDLINE | ID: mdl-28934754

ABSTRACT

BACKGROUND/AIMS: Chemoresistance has been a major obstacle to the effective treatment of lung cancer. Previously, we found that contactin-1 (CNTN-1) is related to cisplatin resistance in lung adenocarcinoma. Here, we aimed to investigate the underlying mechanism behind the role of CNTN-1 in cisplatin resistance in lung adenocarcinoma. METHODS: EMT-associated phenotypes, including alterations in cellular morphology and marker (E-cadherin, N-cadherin and Vimentin) expression, were compared between A549 cells and A549/DDP cells (a cisplatin-resistant cell line of lung adenocarcinoma with abnormal CNTN-1 expression) by using real-time time PCR and Western blotting. Other methods, including CNTN-1 overexpression in A549 cells and CNTN-1 knockdown in A549/DDP cells, were also used to investigate the role of CNTN-1 in mediating the EMT phenotype and thr resulting cisplatin resistance and malignant progression of cancer cells in vitro and in vivo. RESULTS: A549/DDP cells exhibited an EMT phenotype and aggravated malignant behaviors. CNTN-1 knockdown in A549/DDP cells partly reversed the EMT phenotype, increased drug sensitivity, and attenuated the malignant progression whereas CNTN-1 overexpression in A549 cells resulted in the opposite trend. Furthermore, the PI3K/Akt pathway was involved in the effects of CNTN-1 on EMT progression in A549/DDP cells, verified by the xenograft mouse model. CONCLUSION: CNTN-1 promotes cisplatin resistance in human cisplatin-resistant lung adenocarcinoma through inducing the EMT process by activating the PI3K/Akt signaling pathway. CNTN-1 may be a potential therapeutic target to reverse chemoresistance in cisplatin-resistant lung adenocarcinoma.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Contactin 1/metabolism , Lung Neoplasms/drug therapy , Lung/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Animals , Cell Line, Tumor , Contactin 1/genetics , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition/drug effects , Female , Gene Knockdown Techniques , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, SCID , Signal Transduction/drug effects , Up-Regulation
15.
Biomed Pharmacother ; 87: 539-547, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28081464

ABSTRACT

Fibromodulin (FMOD), an ECM small leucine-rich proteoglycan (SLRP), was reported to promote angiogenesis not only during wound healing, but also in optical and cutaneous angiogenesis-dependent diseases. However, whether it plays important roles in tumor angiogenesis remains unclear. To explore the role of FMOD in tumor angiogenesis of human small cell lung cancer (SCLC), initially the study analyzed the relationship of FMOD expression in cancer tissues of SCLC with clinical characteristics. The analysis revealed that the positive FMOD expression was significantly associated with extensive stage of SCLC and higher vascular density. In mouse models, xenograft tumors developed with FMOD-silenced H446 cells (H446-shFMOD) exhibited slowed growth rate, decreased microvessel density, and reduced blood perfusion related to that of controls (H446-shCON). Additionally, compared with that of controls, the decreased secretion of FMOD in conditioned medium (CM) from H446-shFMOD inhibited proliferation, migration, and invasion of human umbilical vessel endothelial cells (HUVECs). Moreover, the decreased secretion of FMOD downregulated the expression of VEGF, TGF-ß1, FGF-2, and PDGF-B in HUVECs. The findings strongly suggested that the autocrine FMOD of cancer cells may promote tumor angiogenesis of SCLC by upregulating the expression of angiogenic factors that act in concert to facilitate the angiogenic phenotype of endothelial cells as a proangiogenic factor. Therefore, silencing FMOD may be a potentially clinical therapy for repressing tumor angiogenesis.


Subject(s)
Angiogenesis Inducing Agents/metabolism , Down-Regulation/physiology , Endothelial Cells/metabolism , Fibromodulin/metabolism , Lung Neoplasms/metabolism , Neovascularization, Pathologic/metabolism , Small Cell Lung Carcinoma/metabolism , Animals , Cell Line , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Female , Fibroblast Growth Factor 2/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, SCID , Middle Aged , Neoplasm Invasiveness/pathology , Neovascularization, Physiologic/physiology , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/metabolism
16.
Oncotarget ; 7(37): 59742-59753, 2016 Sep 13.
Article in English | MEDLINE | ID: mdl-27486757

ABSTRACT

It has been well established that besides environmental factors, genetic factors are also associated with lung cancer risk. However, to date, the prior identified genetic variants and loci only explain a small fraction of the familial risk of lung cancer. Hence it is vital to investigate the remaining missing heritability to understand the development and process of lung cancer. In the study, to test our hypothesis that the previously identified breast cancer risk-associated genetic polymorphisms at the TOX3/LOC643714 locus might contribute to lung cancer risk, 16 SNPs at the TOX3/LOC643714 locus were evaluated in a Han Chinese population based on a case-control study. Pearson's chi-square test or Fisher's exact test revealed that rs9933638, rs12443621, and rs3104746 were significantly associated with lung cancer risk (P < 0.001, P < 0.001, and P = 0.005, respectively). Logistic regression analyses displayed that lung cancer risk of individuals with rs9933638(GG+GA) were 1.89 times higher than that of rs9933638AA carriers (OR = 1.893, 95% CI = 1.308-2.741, P = 0.001). Similar findings were manifested for rs12443621 (OR = 1.824, 95% CI = 1.272-2.616, P = 0.001, rs12443621(GG+GA) carriers vs. rs12443621AA carriers) and rs3104746 (OR = 1.665, 95% CI = 1.243-2.230, P = 0.001, rs3104746TT carriers vs. rs3104746(TA+AA) carriers). The study discovered for the first time that three SNPs (rs9933638, rs12443621, and rs3104746) at the TOX3/LOC643714 locus contributed to lung cancer risk, providing new evidences that lung cancer and breast cancer are linked at the molecular and genetic level to a certain extent.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide , Receptors, Progesterone/genetics , Adult , Aged , Alleles , Apoptosis Regulatory Proteins , Asian People/genetics , Breast Neoplasms/ethnology , Case-Control Studies , China , Female , Gene Frequency , Genetic Predisposition to Disease/ethnology , Genotype , High Mobility Group Proteins , Humans , Lung Neoplasms/ethnology , Male , Middle Aged , Risk Factors , Trans-Activators
17.
Cell Physiol Biochem ; 36(6): 2403-17, 2015.
Article in English | MEDLINE | ID: mdl-26279443

ABSTRACT

BACKGROUND: Alveolar epithelial cell death plays a critical role in the pathogenesis of lipopolysaccharide (LPS)-induced acute lung injury. Increased autophagy has a dual effect on cell survival. However, it is not known whether autophagy promotes death or survival in human alveolar epithelial cells exposed to LPS. METHODS: Genetic and pharmacological approaches were used to evaluate the effect of autophagy on A549 cell viability upon LPS exposure. The endoplasmic reticulum (ER) stress and unfolded protein response (UPR) pathways were examined with immunoblotting studies to further explore underlying mechanisms. RESULTS: Treatment with LPS (50 µg/ml) led to autophagy activation and decreased cell viability in A549 cells. Blocking autophagy via short interfering RNA or inhibitor significantly decreased, whereas rapamycin increased, the LPS-induced effect on viability. ER stress was activated in LPS-stimulated A549 cells, and ER stress inhibitor reduced LPS-induced autophagy. LPS activated only the PERK pathway and had rarely effect on the ATF6 and IRE1 branches of the UPR in A549 cells. Moreover, the knockdown of PERK and ATF4 attenuated LPS-induced autophagy and promoted cell survival. CONCLUSION: In human alveolar epithelial A549 cells, LPS induces autophagic cell death that depends on the activation of the PERK branch of the UPR upon ER stress.


Subject(s)
Autophagy/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Lipopolysaccharides/pharmacology , Pulmonary Alveoli/pathology , Unfolded Protein Response/drug effects , eIF-2 Kinase/metabolism , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 6/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases , Epithelial Cells/drug effects , Epithelial Cells/ultrastructure , Eukaryotic Initiation Factor-2/metabolism , Humans , Protein Phosphatase 1/metabolism , Protein Serine-Threonine Kinases , Regulatory Factor X Transcription Factors , Transcription Factors/metabolism
18.
Biomed Pharmacother ; 71: 172-84, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25960233

ABSTRACT

Contactin-1 (CNTN-1), a glycosyl phosphatidylinositol anchor neural cell adhesion molecule (ACAM), is thought to function not only in nervous system development but also in the invasion and metastasis of several tumours. To investigate whether CNTN-1 is involved in multidrug resistance (MDR) in lung adenocarcinoma, CNTN-1 expression was compared between MDR human lung adenocarcinoma A549/cisplatin (A549/DDP) cells and its progenitor A549 cells. The comparison showed that CNTN-1 expression in A549/DDP cells was significantly higher than in A549 cells both at the mRNA level and the protein level. In order to confirm the physiological function of the abnormal expression, lentivirus-mediated short hairpin RNA (shRNA) was used to silence CNTN-1. Cell cytotoxicity assay and cell apoptosis assay revealed that silencing CNTN-1 both in A549 cells and in A549/DDP cells not only rendered cells more sensitive to cisplatin than the negative control, but also increased the cisplatin-induced apoptosis. Metastasis and invasion assays demonstrated that CNTN-1 knockdown reduced metastasis and invasion but did not affect A549 or A549/DDP cell proliferation. To investigate whether the abnormal expression of CNTN-1 is associated with characteristics of patients with non-small cell lung cancer (NSCLC), immunohistochemistry was used to detect CNTN-1 expression in 143 tissue samples from NSCLC patients and the results showed that the degree of CNTN-1 expression positively correlated with lymphatic invasion in patients with lung adenocarcinoma who received adjuvant cisplatin- or carboplatin-based treatment after surgery. Thus, we concluded that CNTN-1 is closely related with MDR of lung adenocarcinoma. Additionally, CNTN-1 is a novel marker to predict chemotherapeutic efficacy of patients with lung adenocarcinoma, especially with regard to cisplatin- or carboplatin-based regimens.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/pathology , Cisplatin/pharmacology , Contactin 1/genetics , Down-Regulation/drug effects , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Adenocarcinoma/drug therapy , Adenocarcinoma of Lung , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cisplatin/therapeutic use , Contactin 1/metabolism , Down-Regulation/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing/drug effects , Humans , Immunohistochemistry , Lung Neoplasms/drug therapy , Male , Middle Aged , Neoplasm Invasiveness , Neoplasm Metastasis , RNA, Small Interfering/metabolism
19.
J Cell Physiol ; 230(10): 2390-402, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25727991

ABSTRACT

Lung inflammation and alveolar epithelial cell death are critical events in the development and progression of acute lung injury (ALI). Although angiopoietin-like protein 4 (ANGPTL4) participates in inflammation, whether it plays important roles in ALI and alveolar epithelial cell inflammatory injury remains unclear. We therefore investigated the role of angptl4 in lipopolysaccharide (LPS)-induced ALI and the associated mechanisms. Lentivirus-mediated short interfering RNA targeted to the mouse angptl4 gene (AngsiRNA) and a negative control lentivirus (NCsiRNA) were intranasally administered to mice. Lung inflammatory injury and the underlying mechanisms for regulation of angptl4 on the LPS-induced ALI were subsequently determined. We reported that angptl4 levels were increased both in human alveolar epithelial A549 cells and lung tissues obtained from a mouse model of LPS-induced ALI. Angptl4 expression was induced by LPS in alveolar epithelial cells, whereas LPS-induced lung inflammation (neutrophils infiltration in the lung tissues, tumor necrosis factor α, interleukin 6), lung permeability (lung wet/dry weight ratio and bronchoalveolar lavage fluid (BALF) protein concentration), tissue damage (caspase3 activation), and mortality rates were attenuated in AngsiRNA-treated mice. The inflammatory reaction (tumor necrosis factor α, interleukin 6) and apoptosis rates were reduced in AngsiRNA(h)-treated A549 cells. Moreover, angptl4 promoted NF-kBp65 expression and suppressed SIRT1 expression both in mouse lungs and A549 cells. Additionally, SIRT1 antagonist nicotinamide (NAM) attenuated the inhibitory effects of AngsiRNA both on LPS-induced NF-kBp65 expression and IL6 expression. These findings suggest that silencing angptl4 protects against LPS-induced ALI via regulating SIRT1/NF-kB signaling pathway.


Subject(s)
Acute Lung Injury/metabolism , Angiopoietins/genetics , NF-kappa B/metabolism , Signal Transduction , Sirtuin 1/genetics , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Angiopoietin-Like Protein 4 , Animals , Bronchoalveolar Lavage Fluid/immunology , Disease Models, Animal , Gene Silencing , Inflammation/genetics , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Mice , Signal Transduction/drug effects , Signal Transduction/genetics
20.
PLoS One ; 9(7): e101406, 2014.
Article in English | MEDLINE | ID: mdl-25025695

ABSTRACT

BACKGROUND: LPS-binding protein (LBP) and its ligand CD14 are located upstream of the signaling pathway for LPS-induced inflammation. Blocking LBP and CD14 binding might prevent LPS-induced inflammation. In previous studies, we obtained a peptide analog (MP12) for the LBP/CD14 binding site and showed that this peptide analog had anti-endotoxin activity. In this study, we used in vitro directed evolution for this peptide analog to improve its in vivo and in vitro anti-endotoxin activity. METHODS: We used error-prone PCR (ep-PCR) and induced mutations in the C-terminus of LBP and attached the PCR products to T7 phages to establish a mutant phage display library. The positive clones that competed with LBP for CD14 binding was obtained by screening. We used both in vivo and in vitro experiments to compare the anti-endotoxin activities of a polypeptide designated P1 contained in a positive clone and MP12. RESULTS: 11 positive clones were obtained from among target phages. Sequencing showed that 9 positive clones had a threonine (T) to methionine (M) mutation in amino acid 287 of LBP. Compared to polypeptide MP12, polypeptide P1 significantly inhibited LPS-induced TNF-α expression and NF-κB activity in U937 cells (P<0.05). Compared to MP12, P1 significantly improved arterial oxygen pressure, an oxygenation index, and lung pathology scores in LPS-induced ARDS rats (P<0.05). CONCLUSION: By in vitro directed evolution of peptide analogs for the LBP/CD14 binding site, we established a new polypeptide (P1) with a threonine (T)-to-methionine (M) mutation in amino acid 287 of LBP. This polypeptide had high anti-endotoxin activity in vitro and in vivo, which suggested that amino acid 287 in the C-terminus of LBP may play an important role in LBP binding with CD14.


Subject(s)
Acute-Phase Proteins/metabolism , Carrier Proteins/metabolism , Endotoxins/antagonists & inhibitors , Lipopolysaccharide Receptors/metabolism , Membrane Glycoproteins/metabolism , Peptides/pharmacology , Acute-Phase Proteins/chemistry , Acute-Phase Proteins/genetics , Amino Acid Sequence , Animals , Binding, Competitive/drug effects , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Line , Cell Surface Display Techniques , Enzyme Activation/drug effects , Gene Expression Regulation/drug effects , Humans , Lipopolysaccharide Receptors/chemistry , Lipopolysaccharide Receptors/genetics , Lipopolysaccharides/adverse effects , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/metabolism , Lung/pathology , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Molecular Sequence Data , Mutation , NF-kappa B/metabolism , Peptide Library , Peptides/chemistry , Protein Binding/drug effects , RNA, Messenger/genetics , Rats , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...