Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br Poult Sci ; 60(3): 202-208, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30968708

ABSTRACT

1. The slow skeletal muscle troponin I (TNNI1) gene has been found to be specifically expressed in slow muscle fibres and plays an important role in muscle development. The aim of this study was to determine the active control area of duck TNNI1 and identify the potential cis-regulatory elements in the promoter. 2. In this study, the TNNI1 promoter was first cloned by genome walking and the sequences were analysed using bioinformatics software. Firefly luciferase reporter gene vectors, driven by a series of constructs with progressive deletions, were used to identify the core transcriptional regulatory region of the duck TNNI1 gene. The methylation status of the CpG island in the TNNI1 promoter was detected in skeletal muscle on embryonic days 21 and 27, by bisulphite sequencing PCR (BSP). 3. The results showed two CpG islands presented in the promoter region, with one of the CpG islands located in the core transcriptional regulatory region (-2078/-885 bp). The total methylation levels of the 14 CpG sites were not altered between breast and leg muscles on embryonic days 21 and 27. However, four CpG sites (loci of positions 4, 11, 13, and 14) showed dramatically different methylation levels between breast and leg muscles at embryonic days 21 and 27. Analysis showed that multiple CpG sites had a significant correlation between the methylation levels of the CpG sites and mRNA expressions in skeletal muscle. Multiple transcription factor binding sites including Sp1, c-Myc, Oct-1 and NF-kB motifs were identified and might be responsible for transcriptional regulation of the TNNI1 gene. 4. These findings contribute to further understanding of the fundamental mechanism for transcriptional regulation of the TNNI1 gene in ducks.


Subject(s)
Avian Proteins/genetics , DNA Methylation , Ducks/genetics , Gene Expression Regulation , Muscle, Skeletal/metabolism , Troponin I/genetics , Animals , Avian Proteins/metabolism , Base Sequence , CpG Islands , Ducks/metabolism , Promoter Regions, Genetic , Troponin I/metabolism
2.
Genet Mol Res ; 13(2): 3275-82, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24841659

ABSTRACT

Chinese black-bone chickens are valued for the medicinal properties of their meat in traditional Chinese medicine. We investigated the genetic diversity and systematic evolution of Chinese black-bone chicken breeds. We sequenced the DNA of 520 bp of the mitochondrial cyt b gene of nine Chinese black-bone chicken breeds, including Silky chicken, Jinhu black-bone chicken, Jiangshan black-bone chicken, Yugan black-bone chicken, Wumeng black-bone chicken, Muchuan black-bone chicken, Xingwen black-bone chicken, Dehua black-bone chicken, and Yanjin black-bone chicken. We found 13 haplotypes. Haplotype and nucleotide diversity of the nine black-bone chicken breeds ranged from 0 to 0.78571 and 0.00081 to 0.00399, respectively. Genetic diversity was the richest in Jinhu black-bone chickens and the lowest in Yanjin black-bone chickens. Analysis of phylogenetic trees for all birds constructed based on hyplotypes indicated that the maternal origin of black-bone chickens is predominantly from three subspecies of red jungle fowl. These results provide basic data useful for protection of black-bone chickens and help determine the origin of domestic chickens.


Subject(s)
Breeding , Chickens/genetics , Genetic Variation , Meat , Animals , Animals, Domestic/genetics , DNA, Mitochondrial/genetics , Haplotypes , Medicine, Chinese Traditional , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...