Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 8(2): 987-993, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-35538957

ABSTRACT

The quality of a perovskite film has a great impact on its light absorption and carrier transport, which is vital to improve high-efficiency perovskite solar cells (PSCs). Herein, it is demonstrated that graphene oxide (GO) can be used as an effective additive in the precursor solution for the preparation of high-quality solution-processed CH3NH3PbI3 (MAIPbI3) films. It is evidenced by scanning electron microscopy that the size of the grains inside these films not only increases but also becomes more uniform after the introduction of an optimized amount of 1 vol% GO. Moreover, 1 vol% GO also enhances the crystallization of perovskite film with intact preferential out-of-plane orientation as proven by 2-dimensional grazing-incidence X-ray diffraction. As a consequence of the improved film quality, enhanced charge extraction efficiency and optical absorption are demonstrated by photoluminescence (PL) spectroscopy and UV-visible absorption spectroscopy, respectively. Using 1 vol% GO, the fabricated champion heterojunction PSC with a structure of ITO/SnO2/perovskite/spiro-OMeTAD/Au shows a significant power conversion efficiency increase to 17.59% with reduced hysteresis from 16.10% for the champion device based on pristine perovskite. The present study thus proposes a simple approach to make use of GO as an effective and cheap addictive for high-performance PSCs with large-scale production capability.

2.
ACS Nano ; 11(9): 8970-8977, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28787120

ABSTRACT

Protons can penetrate through single-layer graphene, but thicker graphene layers (more than 2 layers), which possess more compact electron density, are thought to be unfavorable for penetration by protons at room temperature and elevated temperatures. In this work, we developed an in situ subsecond time-resolved grazing-incidence X-ray diffraction technique, which fully realizes the real-time observation of the thermal proton interaction with the graphene layers at high temperature. By following the evolution of interlayer structure during the protonation process, we demonstrated that thermal protons can transport through multilayer graphene (more than 8 layers) on nickel foil at 900 °C. In comparison, under the same conditions, the multilayer graphenes are impermeable to argon, nitrogen, helium, and their derived ions. Complementary in situ transport measurements simultaneously verify the penetration phenomenon at high temperature. Moreover, the direct transport of protons through graphene is regarded as the dominant contribution to the penetration phenomenon. The thermal activation, weak interlayer interaction between layers, and the affinity of the nickel catalyst may all contribute to the proton transport. We believe that this method could become one of the established approaches for the characterization of the ions intercalated with 2D materials in situ and in real-time.

3.
ACS Appl Mater Interfaces ; 9(27): 23141-23151, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28603955

ABSTRACT

Despite rapid successful developments toward promising perovskite solar cells (PSCs) efficiency, they often suffer significant hysteresis effects. Using synchrotron-based grazing incidence X-ray diffraction (GIXRD) with different probing depths by varying the incident angle, we found that the perovskite films consist of dual phases with a parent phase dominant in the interior and a child phase with a smaller (110) interplanar space (d(110)) after rapid thermal annealing (RTA), which is a widely used post treatment to improve the crystallization of solution-processed perovskite films for high-performance planar PSCs. In particular, the child phase composition gradually increases with decreasing depth till it becomes the majority on the surface, which might be one of the key factors related to hysteresis in fabricated PSCs. We further improve the crystalline phase purity of the solution-processed CH3NH3PbI3-xClx perovskite film (referred as g-perovskite) by using a facile gradient thermal annealing (GTA), which shows a uniformly distributed phase structure in pinhole-free morphology with less undercoordinated Pb and I ions determined by synchrotron-based GIXRD, grazing incidence small-angle X-ray scattering, scanning electron microscopy, and X-ray photoelectron spectroscopy. Regardless of device structures (conventional and inverted types), the planar heterojunction PSCs employing CH3NH3PbI3-xClx g-perovskite films exhibit negligible hysteresis with a champion power conversion efficiency of 17.04% for TiO2-based conventional planar PSCs and 14.83% for poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) (PEDOT:PSS)-based inverted planar PSCs. Our results indicate that the crystalline phase purity in CH3NH3PbI3-xClx perovskite film, especially in the surface region, plays a crucial role in determining the hysteresis effect and device performance.

4.
Phys Chem Chem Phys ; 19(9): 6546-6553, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28197568

ABSTRACT

The electronic structures of rubrene films deposited on CH3NH3PbI3 perovskite have been investigated using in situ ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). It was found that rubrene molecules interacted weakly with the perovskite substrate. Due to charge redistribution at their interface, a downward 'band bending'-like energy shift of ∼0.3 eV and an upward band bending of ∼0.1 eV were identified at the upper rubrene side and the CH3NH3PbI3 substrate side, respectively. After the energy level alignment was established at the rubrene/CH3NH3PbI3 interface, its highest occupied molecular orbital (HOMO)-valence band maximum (VBM) offset was found to be as low as ∼0.1 eV favoring the hole extraction with its lowest unoccupied molecular orbital (LUMO)-conduction band minimum (CBM) offset as large as ∼1.4 eV effectively blocking the undesired electron transfer from perovskite to rubrene. As a demonstration, simple inverted planar solar cell devices incorporating rubrene and rubrene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layers (HTLs) were fabricated in this work and yielded a champion power conversion efficiency of 8.76% and 13.52%, respectively. Thus, the present work suggests that a rubrene thin film could serve as a promising hole transport layer for efficient perovskite-based solar cells.

5.
ACS Appl Mater Interfaces ; 8(23): 14503-12, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27229127

ABSTRACT

The introduction of an ammonia modified graphene oxide (GO:NH3) layer into perovskite-based solar cells (PSCs) with a structure of indium-tin oxide (ITO)/poly(3,4-ethylene-dioxythiophene):poly(4-styrenesulfonate) ( PEDOT: PSS)-GO: NH3/CH3NH3PbI3-xClx/phenyl C61-butyric acid methyl ester (PCBM)/(solution Bphen) sBphen/Ag improves their performance and perovskite structure stability significantly. The fabricated devices with a champion PCE up to 16.11% are superior in all the performances in comparison with all the reference devices without the GO:NH3 layer. To understand the improved device performances, synchrotron-based grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and UV-visible absorption measurements have been conducted on perovskite films on different substrates. It was found that these improvements should be partially attributed to the improved crystallization and preferred orientation order of peovskite structure, partially to the improved morphology with nearly complete coverage, partially to the enhanced optical absorption caused by the PEDOT: PSS-GO:NH3 layer, and partially to the better matched energy-level-alignment at the perovskite interface. Furthermore, the device was shown to be more stable in the ambient condition, which is clearly associated with the improved peovskite structure stability by the GO:NH3 layer observed by the GIXRD measurements. All these achievements will promote more applications of chemically modified graphene oxide interfacial layer in the PSCs as well as other organic multilayer devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...