Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Antonie Van Leeuwenhoek ; 117(1): 73, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676821

ABSTRACT

The deoxynivalenol (DON)-degrading bacterium JB1-3-2 T was isolated from a rhizosphere soil sample of cucumber collected from a greenhouse located in Zhenjiang, Eastern China. The JB1-3-2 T strain is a Gram-stain-positive, nonmotile and round actinomycete. Growth was observed at temperatures between 15 and 40 ℃ (optimum, 35 ℃), in the presence of 15% (w/v) NaCl (optimum, 3%), and at pH 3 and 11 (optimum, 7). The major cellular fatty acids identified were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. Genome sequencing revealed a genome size of 4.11 Mb and a DNA G + C content of 72.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the JB1-3-2 T strain was most closely related to type strains of the Oerskovia species, with the highest sequence similarity to Oerskovia turbata NRRL B-8019 T (98.2%), and shared 98.1% sequence identity with other valid type strains of this genus. Digital DNA‒DNA hybridization (dDDH) and average nucleotide identity (ANI) showed 21.8-22.2% and 77.2-77.3% relatedness, respectively, between JB1-3-2 T and type strains of the genus Oerskovia. Based on genotypic, phylogenetic, chemotaxonomic, physiological and biochemical characterization, Oerskovia flava, a novel species in the genus Oerskovia, was proposed, and the type strain was JB1-3-2 T (= CGMCC 1.18555 T = JCM 35248 T). Additionally, this novel strain has a DON degradation ability that other species in the genus Oerskovia do not possess, and glutathione-S-transferase was speculated to be the key enzyme for strain JB1-3-2 T to degrade DON.


Subject(s)
Cucumis sativus , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Trichothecenes , Cucumis sativus/microbiology , Trichothecenes/metabolism , RNA, Ribosomal, 16S/genetics , Fatty Acids/metabolism , DNA, Bacterial/genetics , China , Base Composition , Bacterial Typing Techniques , Sequence Analysis, DNA , Genome, Bacterial
2.
Bioresour Technol ; 393: 130073, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984666

ABSTRACT

Biomass to coal-like hydrochar via hydrothermal carbonization (HTC) is a promising route for sustainability development. Yet conventional experimental method is time-consuming and costly to optimize HTC conditions and characterize hydrochar. Herein, machine learning was employed to predict the fuel properties of hydrochar. Random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) models were developed, presenting acceptable prediction performance with R2 at 0.825---0.985 and root mean square error (RMSE) at 1.119---5.426, and XGB outperformed RF and SVM. The model interpretation indicated feedstock ash content, reaction temperature, and solid to liquid ratio were the three decisive factors. The optimized XGB multi-task model via feature re-examination illustrated improved generalization ability with R2 at 0.927 and RMSE at 3.279. Besides, the parameters optimization and experimental verification with wheat straw as feedstock further demonstrated the huge application potential of machine learning in hydrochar engineering.


Subject(s)
Carbon , Coal , Biomass , Hydrolases , Temperature
3.
J Hazard Mater ; 460: 132500, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37708645

ABSTRACT

To establish a reliable disposal platform of plastic waste, this work developed a novel dual-stage CO2-medaited decomposition-catalysis route by applying multi-functional zeolite-supported bimetallic catalysts. Catalytic upcycling of plastic was first performed in Ar as a reference environment. Bimetallic Fe-Co/ZSM5 catalyst achieved the highest gas yield (53.98 mmol/g), with a H2 proportion of 62.17 vol%. It was evidenced that the Fe-Co alloy had an apparent positive synergistic effect on catalytic cracking and reforming of intermediate volatiles into H2-rich fuel gas and pure carbon nanotubes (CNTs). Regarding CO2-mediated decomposition-catalysis of plastic, there was an apparent synergistic effect between metallic Ni and Fe on gas production so that bimetallic Ni-Fe catalyst gained the maximum cumulative gas yield of 82.33 mmol/g, with a syngas purity of ∼74%. Ni-Fe/ZSM5 also achieved the maximum hydrogen efficiency (87.38%) and CO2-to-CO conversion efficiency (98.62%), implying hydrogen content in plastic and oxygen content in CO2 were essentially converted into gases. Additionally, bimetallic Ni-Fe catalyst revealed the highest carbon production (33.74 wt%), witnessing a synergistic enhancement of 43.45%; specially, approximately 257 mg/g CNTs were anchored on Ni-Fe/ZSM5, with a CNTs purity of over 76%. Overall, this study offers a superb solution in plastic waste valorization and greenhouse gas emission management.

4.
Bioresour Technol ; 387: 129662, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37573983

ABSTRACT

Biomass to green H2 is a new route to produce sustainable energy. This study aimed to boost H2-enriched gas production via gasification-catalytic steam reforming (GCSR) process of wheat straw (WS) over Ni, Fe, or Zn-doped carbon materials (MDCMs). Initially, steam injection rate (1 g/min) and residence time (15 min) was optimized based on the tradeoff between energy consumption and H2-rich gas generation. The largest gas yield (90.77 mmol/g) and the lowest H2 production efficiency (ƞ: 7.89 g CO2/g H2) were observed for WS-derived biochar. Clearly, it was found MDCMs were favorable for reducing CO2 production due to the strengthened CO2 reforming reactions catalyzed by metal active sites. A higher ƞ (6.72 g CO2/g H2) was achieved for Ni-doping biochar (Ni/C). Importantly, Ni/C showed the ultrahigh carbon conversion efficiency (99.47%) and great tar elimination performance. Overall, GCSR process over MDCMs is a newly promising way to valorize biomass into H2-rich gas.


Subject(s)
Gases , Steam , Gases/chemistry , Carbon Dioxide , Biomass , Porosity , Metals , Catalysis , Carbon , Hydrogen/chemistry
5.
Bioresour Technol ; 286: 121364, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31026715

ABSTRACT

In this work, the deconstruction mechanism of corn stover cell wall polymers during ball milling was evaluated. The characterization showed that ball milling not only brought about the dissociation of the cross-linked cellulose-hemicellulose-lignin complex but also led to the depolymerization of the cell-wall polymers especially the carbohydrates. Micromorphology characterization revealed that mechanical treatment disrupted the orderly fibrillar matrices with a porous structure. The breakage of ß-1,4 glycosidic bonds in cellulose and the decomposition of arabinoxylans indicated the modification in polysaccharide chains. The degradation of lignin-carbohydrate complex (LCC) linkages and the cleavage of ß-O-4' linkages in lignin approved the partial degradation of lignin. In conclusion, mechanochemistry is an efficient force to make the polymers in plant fibers more digestible.


Subject(s)
Lignin , Polymers , Cell Wall , Cellulose
6.
Bioresour Technol ; 273: 70-76, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30415071

ABSTRACT

Straw biomass is a promising adsorbent for the removal of heavy metals. To improve its Pb(II) adsorption capacity and elucidate competition of adsorption mechanisms (e.g., ion exchange and precipitation), the Pb(II) adsorption mechanisms for wheat straw (WS-CK), wheat straw-biochar (WS-BC), and ball-milled wheat straw-biochar (WS-BC + BM) samples were investigated in detail by EDX, XRD, and FTIR. The results implied that the Pb(II) adsorption capacities at an adsorbent dosage of 0.2 g/L onto WS-CK, WS-BC, and WS-BC + BM were 46.33, 119.55, and 134.68 mg/g, respectively. This indicates that carbonization and ball milling are efficient techniques for improving the adsorption capacity of Pb(II) onto wheat straw, as WS-BC and WS-BC + BM exhibited adsorption capacities comparable to other commonly used bioadsorbents. Carbonization contributed significantly to precipitation (e.g., PbCO3 and Pb3(CO3)2(OH)2). Furthermore, competition existed between ion exchange and precipitation during the Pb(II) adsorption process. With relative lower adsorbent dosages, carbonization and ball milling enhanced ion exchange capacity.


Subject(s)
Carbon/metabolism , Lead/metabolism , Triticum/metabolism , Adsorption , Biomass , Charcoal , Ion Exchange
7.
Bioresour Technol ; 241: 214-219, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28570886

ABSTRACT

To investigate the change of structure and physicochemical properties of wheat straw in ball milling process at cellular scale, a series of wheat straws samples with different milling time were produced using an ultrafine vibration ball mill. A multitechnique approach was used to analyze the variation of wheat straw properties. The results showed that the characteristics of wheat straw powder displayed regular changes as a function of the milling time, i.e., the powder underwent the inversion of breakage to agglomerative regime during wheat straw ball milling process. The crystallinity index, bulk density and water retention capacity of wheat straw were exponential relation with ball milling time. Moreover, ball milling continually converted macromolecules of wheat straw cell wall into water-soluble substances resulting in the water extractives proportional to milling time.


Subject(s)
Refuse Disposal , Triticum , Water
8.
Bioresour Technol ; 241: 262-268, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28575789

ABSTRACT

Mechanical fragmentation is an important pretreatment in the biomass biotransformation process. Mechanical fragmentation at the tissue scale significantly reduced the particle size of rice straw but did not significantly change its crystalline properties; the increase in the glucose yield was limited from 28.75% (95.55mg/g substrate) to 35.29% (115.28mg/g substrate). Mechanical fragmentation at the cellular scale destroyed the cell wall structure and reduced its crystalline properties. Thus, the glucose yield also showed a significant increase from 35.29% (115.28mg/g substrate) to 81.71% (287.07mg/g of substrate). The quantitative equations among the particle size, crystalline properties and glucose yield (mg/g substrate) are as follows: CrI=44.14×[1-exp(-0.03658×D50)] and CP=(8.403×logD50-24.1836)/(1-4.225/D50^0.5); GY=-5.636CrI+343.7 and GY=-14.62CP+512.1; and GY=97.218+247.5×exp(-0.03824×D50). The quantitative correlations among the mechanical fragmentation scales and crystalline properties can determine the effect and mechanism of mechanical fragmentation on biomass and can further promote the construction of a cost-competitive biotransformation process for biomass.


Subject(s)
Glucose , Oryza , Biomass , Bioreactors , Cell Wall , Hydrolysis
9.
Bioresour Technol ; 205: 159-65, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26826955

ABSTRACT

In this work, corncob samples at different scales, i.e., plant scale (>1mm), tissue scale (500-100µm) and cellular scale (50-30µm), were produced to investigate the impact and mechanisms of different mechanical fragmentations on microstructure features and enzymatic hydrolysis. The results showed that the microstructure features and enzymatic hydrolysis of corncob samples, either at a plant scale or tissue scale, did not change significantly. Conversely, corncob samples at a cellular scale exhibited some special properties, i.e., an increase in the special surface area with the inner mesopores and macropores exposed to the surface; breakage of crystalline cellulose and linkages in polysaccharides; and a higher proportion of polysaccharides on the surface, which significantly enhanced enzymatic digestibility resulting in a 98.3% conversion yield of cellulose to glucose which is the highest conversion ever reported. In conclusion, mechanical fragmentation at the cellular scale is an effective pretreatment for corncob.


Subject(s)
Biotechnology/methods , Glucose/metabolism , Zea mays/chemistry , Zea mays/ultrastructure , Cellulases/chemistry , Cellulases/metabolism , Cellulose/chemistry , Cellulose/metabolism , Glucose/chemistry , Hydrolysis , Microscopy, Electron, Scanning , Particle Size , Polysaccharides/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...