Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 11: 1408937, 2024.
Article in English | MEDLINE | ID: mdl-39045285

ABSTRACT

Introduction: 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) is a promising emulsifier for bioactive delivery systems, but its industrial applications are limited by the lack of cost-effective and scalable synthetic routes. The purpose of this study was to economically produce high-purity DMPC by replacing commonly used column chromatography methods and to evaluate the emulsifying performance. Methods: DMPC was synthesized from sn-glycero-3-phosphocholine using Steglich esterification followed by sequential recrystallization from ethyl acetate and acetone. The structure of DMPC was identified and its purity was confirmed using various spectroscopy and chromatography techniques. The emulsifying performance was evaluated by examining the effects of storage on the properties of o/w emulsions prepared using soybean oil with (i) soy PC, (ii) soy PC + DMPC (1:1, w/w), and (iii) DMPC as emulsifiers. Results: The chemical impurities formed during the synthesis of DMPC was removed, and its final purity was 96%, and the melt transition temperature was 37.6°C. No visible difference between the three emulsions (soy PC, soy PC+DMPC, and DMPC) was observed during two-week storage, and the DMPC-based emulsion was more stable than soy PC emulsion, showing smaller particle size distribution during 6 months. Discussion: The highly pure DMPC was synthesized by an economical method, and DMPC-based emulsions demonstrated physicochemical stable, highlighting its potential for food and pharmaceutical industry-related applications. Our findings suggest that DMPC holds promise as an emulsifier with broad applications in the food industry.

2.
PLoS One ; 15(6): e0234319, 2020.
Article in English | MEDLINE | ID: mdl-32542057

ABSTRACT

AIMS: Robust evidence supports intensive glucose control in those with recently diagnosed type 1 diabetes to reduce the risk of developing micro- and macrovascular complications. Data to support longitudinal glycaemic targets is lacking. We aimed to explore if longer duration of diabetes and greater age might reduce the impact of glycaemia on the risk of vascular complications. RESEARCH AND DESIGN METHODS: Data for adults age 20 years or more, was extracted from a clinical database of people with type 1 diabetes cared for at a London teaching hospital. The presence or absence of micro- and macro-vascular complications was recorded. Multivariable logistic regression analysis was performed using HbA1c as independent variable, diabetes duration and age as continuous variable and obesity, hypertension, hypercholesterolaemia, low HDL cholesterol and hypertriglyceridaemia as categorical variables. RESULTS: Data from 495 patients was used. HbA1c above 60 mmol/mol (7.6%) was associated with increased microvascular complications in patients aged 20-44 years, independent of age and duration of diabetes. In older people with T1DM duration of diabetes was the major risk factor. CONCLUSIONS: Our study suggests that increased age and greater duration of diabetes reduce the impact of glycaemia on the risk of vascular complications. Intensive blood glucose management in patients aged ≥45 years may have limited benefits in terms of reducing the risk of complications although this does not dismiss the benefits of good glycaemic control in older people with T1DM.


Subject(s)
Diabetes Mellitus, Type 1/blood , Diabetic Angiopathies/blood , Glycated Hemoglobin/metabolism , Adult , Aged , Aged, 80 and over , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetic Angiopathies/prevention & control , Female , Glycemic Load , Humans , Hypoglycemic Agents , Insulin/blood , Longitudinal Studies , Male , Middle Aged , Obesity/blood , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...