Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 250: 126116, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37541471

ABSTRACT

Dapagliflozin (DAPA) confers significant protection against heart and kidney diseases. However, whether DAPA can alleviate type 4 cardiorenal syndrome (CRS-4)-related cardiomyopathy remains unclear. We tested the hypothesis that DAPA attenuates CRS-4-related myocardial damage through pyruvate kinase isozyme M2 (PKM2) induction and FUN14 domain containing 1 (FUNDC1)-related mitophagy. Cardiomyocyte-specific PKM2 knockout (PKM2CKO) and FUNDC1 knockout (FUNDC1CKO) mice were subjected to subtotal (5/6) nephrectomy to establish a CRS-4 model in vivo. DAPA enhanced PKM2 expression and improved myocardial function and structure in vivo, and this effect was abrogated by PKM2 knockdown. A significant improvement in mitochondrial function was observed in HL-1 cells exposed to sera from DAPA-treated mice, as featured by increased ATP production, decreased mtROS production, improved mitochondrial membrane potential, preserved mitochondrial complex activity, and reduced mitochondrial apoptosis. DAPA restored FUNDC1-dependent mitophagy through post-transcriptional dephosphorylation in a manner dependent on PKM2 whereas ablation of FUNDC1 abolished the defensive actions of DAPA on myocardium and mitochondria under CRS-4. Co-IP and molecular docking assays indicated that PKM2 directly interacted with protein phosphatase 1 (PP1) and FUNDC1, leading to PP1-mediated FUNDC1 dephosphorylation. These results suggest that DAPA attenuates CRS-4-related cardiomyopathy through activating the PKM2/PP1/FUNDC1-mitophagy pathway.

2.
J Clin Hypertens (Greenwich) ; 24(4): 418-429, 2022 04.
Article in English | MEDLINE | ID: mdl-35238151

ABSTRACT

This study aimed to explore whether brachial-ankle pulse wave velocity (baPWV) and brachial artery flow-mediated dilation (FMD) or the interaction of both parameters are associated with subclinical target organ damage (STOD) indices in patients with essential hypertension. A total of 4618 patients registered from January 2015 to October 2020 were included. baPWV and FMD were measured to evaluate arterial stiffness and endothelial dysfunction. Whereas left ventricular hypertrophy (LVH), urine albumin-creatinine ratio (UACR), and carotid intima-media thickness (CIMT) were obtained as STOD indicators. On multivariable logistic regression analysis with potential confounders, higher quartiles of baPWV and FMD were significantly associated with an increased risk of STOD. In patients <65 years of age, the odds ratio (OR) of LVH, UACR, and CIMT ≥.9 mm for the fourth versus the first quartile of baPWV were 1.765 (1.390-2.240), 2.832 (2.014-3.813), and 3.075 (2.315-4.084), respectively. In interaction analysis, an increase in baPWV shows a progressively higher risk of STOD across the quartiles of FMD. Also, the estimated absolute risks of LVH, UACR, and CIMT ≥.9 mm for the first to fourth quartile of baPWV increased from 1.88 to 2.75, 2.35 to 4.44, and 3.10 to 6.10, respectively, in patients grouped by FMD quartiles. The addition of baPWV to FMD slightly improved risk prediction for STOD. BaPWV and FMD were independently associated with an increased risk of STOD in patients with essential hypertension especially among patients <65 years of age. Patients with elevated baPWV and decreased FMD parameters are at increased risk of STOD.


Subject(s)
Hypertension , Vascular Stiffness , Ankle Brachial Index , Brachial Artery , Carotid Intima-Media Thickness , Dilatation, Pathologic , Essential Hypertension , Humans , Hypertrophy, Left Ventricular/complications , Hypertrophy, Left Ventricular/diagnosis , Hypertrophy, Left Ventricular/epidemiology , Pulse Wave Analysis , Risk Factors
3.
Bioengineered ; 13(2): 3596-3607, 2022 02.
Article in English | MEDLINE | ID: mdl-35112987

ABSTRACT

The coronary arteries mainly function to perfuse the myocardium. When coronary artery resistance increases, myocardial perfusion decreases and myocardial remodeling occurs. Mitochondrial damage has been regarded as the primary cause of microvascular dysfunction. In the present study, we explored the effects of mitophagy activation on microvascular damage. Hypoxia/reoxygenation injury induced mitochondrial oxidative stress, thereby promoting mitochondrial dysfunction in endothelial cells. Mitochondrial impairment induced apoptosis, reducing the viability and proliferation of endothelial cells. However, supplementation with the mitophagy inducer urolithin A (UA) preserved mitochondrial function by reducing mitochondrial oxidative stress and stabilizing the mitochondrial membrane potential in endothelial cells. UA also sustained the viability and improved the proliferative capacity of endothelial cells by suppressing apoptotic factors and upregulating cyclins D and E. In addition, UA inhibited mitochondrial fission and restored mitochondrial fusion, which reduced the proportion of fragmented mitochondria within endothelial cells. UA enhanced mitochondrial biogenesis in endothelial cells by upregulating sirtuin 3 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha. These results suggested that activation of mitophagy may reduce hypoxia/reoxygenation-induced cardiac microvascular damage by improving mitochondrial quality control and increasing cell viability and proliferation.


Subject(s)
Endothelial Cells , Mitophagy , Endothelial Cells/metabolism , Humans , Hypoxia/metabolism , Ischemia/metabolism , Mitochondria , Mitophagy/physiology , Reperfusion
4.
Cell Signal ; 92: 110249, 2022 04.
Article in English | MEDLINE | ID: mdl-35051611

ABSTRACT

The mitochondrial unfolded protein response (UPRmt) is an adaptive transcriptional response involving the activation of proteases, chaperones, and antioxidant enzymes and serves to degrade abnormal or unfolded proteins and restore mitochondrial function. Although the cardioprotective action of the UPRmt has been verified in myocardial ischemia/reperfusion (I/R) injuries, the upstream signals involved remain unclear. Here, we explored the regulatory mechanisms underlying UPRmt in the reperfused mouse heart. UPRmt was slightly activated by I/R injury. UPRmt activation (using oligomycin) and inhibition (with the protease inhibitor AEBSF) respectively alleviated and augmented the reperfusion-mediated myocardial damage. Gene expression analysis demonstrated that oxidative stress was partly inhibited by UPRmt through upregulation of mitochondria-localized, not cytoplasmic, antioxidant enzymes. Contributing to cardiomyocyte survival under I/R, the transcription of pro-apoptotic proteins Bcl2 and c-IAP was also stimulated by UPRmt. Moreover, UPRmt upregulated mitochondrial fusion-related, but not fission-related, genes and stimulated the expression of mitochondrial biogenesis markers in reperfused hearts. Finally, we found that FUN14 domain containing 1 (FUNDC1)-mediated mitophagy induces the mitochondrial DNA decrease, triggering UPRmt. These results demonstrate that FUNDC1 functions upstream of the UPRmt to maintain mitochondrial quality control during myocardial I/R injury.


Subject(s)
Mitochondrial Proteins , Myocardial Reperfusion Injury , Animals , Ischemia/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Unfolded Protein Response
5.
Front Physiol ; 12: 700585, 2021.
Article in English | MEDLINE | ID: mdl-34276422

ABSTRACT

A variety of complex risk factors and pathological mechanisms contribute to myocardial stress, which ultimately promotes the development of cardiovascular diseases, including acute cardiac insufficiency, myocardial ischemia, myocardial infarction, high-glycemic myocardial injury, and acute alcoholic cardiotoxicity. Myocardial stress is characterized by abnormal metabolism, excessive reactive oxygen species production, an insufficient energy supply, endoplasmic reticulum stress, mitochondrial damage, and apoptosis. Mitochondria, the main organelles contributing to the energy supply of cardiomyocytes, are key determinants of cell survival and death. Mitophagy is important for cardiomyocyte function and metabolism because it removes damaged and aged mitochondria in a timely manner, thereby maintaining the proper number of normal mitochondria. In this review, we first introduce the general characteristics and regulatory mechanisms of mitophagy. We then describe the three classic mitophagy regulatory pathways and their involvement in myocardial stress. Finally, we discuss the two completely opposite effects of mitophagy on the fate of cardiomyocytes. Our summary of the molecular pathways underlying mitophagy in myocardial stress may provide therapeutic targets for myocardial protection interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...