Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Med Chem ; 15(4): 1198-1209, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665835

ABSTRACT

Ferroptosis is a nonapoptotic, iron-catalyzed form of regulated cell death. It has been shown that high glucose (HG) could induce ferroptosis in vascular endothelial cells (VECs), consequently contributing to the development of various diseases. This study synthesized and evaluated a series of novel ferrostatin-1 (Fer-1) derivatives fused with a benzohydrazide moiety to prevent HG-induced VEC ferroptosis. Several promising compounds showed similar or improved inhibitory effects compared to positive control Fer-1. The most effective candidate 12 exhibited better protection against erastin-induced ferroptosis and high glucose-induced ferroptosis in VECs. Mechanistic studies revealed that compound 12 prevented mitochondrial damage, reduced intracellular ROS accumulation, upregulated the expression of GPX4, and decreased the amounts of ferrous ion, LPO and MDA in VECs. However, compound 12 still exhibited undesirable microsomal stability like Fer-1, suggesting the need for further optimization. Overall, the present findings highlight ferroptosis inhibitor 12 as a potential lead compound for treating ferroptosis-associated vascular diseases.

2.
Bioorg Med Chem ; 105: 117716, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38608329

ABSTRACT

In this study, a series of new formylpiperazine-derived ferroptosis inhibitors were designed and synthesized based on the structure of a known ferroptosis inhibitor, ferrostatin-1 (Fer-1). The anti-ferroptosis activity of these synthetic compounds in human umbilical vein endothelial cells (HUVECs) induced by Erastin was evaluated. It was found that some of the new compounds, especially compound 26, showed potent anti-ferroptosis activity, as evidenced by its ability to restore cell viability, reduce iron accumulation, scavenge reactive oxygen species, maintain mitochondrial membrane potential, increase GSH levels, decrease LPO and MDA content, and upregulate GPX4 expression. Moreover, compound 26 exhibited superior microsomal stability than Fer-1. The present results suggest that compound 26 is a promising lead compound for the development of new ferroptosis inhibitors for the treatment of vascular diseases.


Subject(s)
Cell Survival , Cyclohexylamines , Drug Design , Ferroptosis , Human Umbilical Vein Endothelial Cells , Piperazines , Humans , Ferroptosis/drug effects , Piperazines/pharmacology , Piperazines/chemical synthesis , Piperazines/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Structure-Activity Relationship , Cyclohexylamines/pharmacology , Cyclohexylamines/chemistry , Cyclohexylamines/chemical synthesis , Cell Survival/drug effects , Molecular Structure , Phenylenediamines/pharmacology , Phenylenediamines/chemistry , Phenylenediamines/chemical synthesis , Dose-Response Relationship, Drug , Reactive Oxygen Species/metabolism , Ferrous Compounds/pharmacology , Ferrous Compounds/chemistry , Ferrous Compounds/chemical synthesis , Membrane Potential, Mitochondrial/drug effects
3.
Bioorg Med Chem Lett ; 95: 129468, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37689216

ABSTRACT

One effective strategy for treating atherosclerosis is to inhibit the injury of vascular endothelial cells (VECs) induced by oxidized low-density lipoprotein (oxLDL) and high glucose (HG). This study synthesized and evaluated a series of novel Nrf2 activators derived from the marine natural product phidianidine for their ability to protect human umbilical VECs against oxLDL- and HG-induced injury. The results of in vitro bioassays demonstrated that compound D-36 was the most promising Nrf2 activator, effectively inhibiting the apoptosis of HUVECs induced by oxLDL and HG. Furthermore, Nrf2 knockdown experiments confirmed that compound D-36 protected against oxLDL- and HG-induced apoptosis in HUVECs by activating the Nrf2 pathway. These findings provide important insights into a new chemotype of marine-derived Nrf2 activators that could potentially be optimized to develop effective anti-atherosclerosis agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...