Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 57(30): 9351-9356, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-29870143

ABSTRACT

Oxygen activation plays a crucial role in many important chemical reactions such as oxidation of organic compounds and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in situ formed amorphous H2 WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6 ] and water of H2 WO4 , consequently leading to optimized surface electronic configuration and strong metal-support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight into the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts.

2.
Angew Chem Int Ed Engl ; 56(29): 8407-8411, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28052568

ABSTRACT

0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3 , BiVO4 , InVO4 and CuV2 O6 ) QDs/graphitic carbon nitride (g-C3 N4 ) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up-conversion absorption, and nitrogen coordinating sites of g-C3 N4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible-light-driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto-electronic applications, not limited in photocatalysis.

3.
Nanoscale Res Lett ; 5(3): 644-648, 2010 Jan 16.
Article in English | MEDLINE | ID: mdl-20672076

ABSTRACT

Large-scale uniform ZnO dumbbells and ZnO/ZnS hollow nanocages were successfully synthesized via a facile hydrothermal route combined with subsequent etching treatment. The nanocages were formed through preferential dissolution of the twinned (0001) plane of ZnO dumbbells. Due to their special morphology, the hollow nanocages show better sensing properties to ethanol than ZnO dumbbells. The gain in sensitivity is attributed to both the interface between ZnO and ZnS heterostructure and their hollow architecture that promotes analyte diffusion and increases the available active surface area.

SELECTION OF CITATIONS
SEARCH DETAIL
...