Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 66(8): 1889-1897, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29409322

ABSTRACT

With the increase of tea (Camellia sinensis) consumption, its chemical or metabolite compositions play a crucial role in the determination of tea quality. In general, metabolite compositions of fresh tea leaves including shoots depend on plucking seasons and tea cultivators. Therefore, choosing a specific plucking time of tea leaves can provide use-specified tea products. Artificial control of tea growing, typically shade treatments, can lead to significant changes of the tea metabolite compositions. However, metabolic characteristics of tea grown under various shade treatment conditions remain unclear. Therefore, the objective of the current study was to explore effects of various shade conditions on metabolite compositions of tea through a 1H NMR-based metabolomics approach. It was noteworthy that the levels of catechins and their derivatives were only influenced at the initial time of shade treatments while most amino acids were upregulated as amounts of shade and periods were increased: that is, the levels of alanine, asparagine, aspartate, isoleucine, threonine, leucine, and valine in fresh tea leaves were conspicuously elevated when shade levels were raised from 90% to 100% and when period of shade treatments was increased by 20 days. Such increased synthesis of amino acids along with large reductions of glucose level reflected carbon starvation under the dark conditions, indicating remarkable proteolysis in the chloroplast of tea leaves. This study provides important information about making amino acid-enhanced tea products based on global characteristics of diverse tea leaf metabolites induced by various shade treatment conditions.


Subject(s)
Camellia sinensis/metabolism , Plant Leaves/chemistry , Amino Acids/chemistry , Amino Acids/metabolism , Camellia sinensis/chemistry , Camellia sinensis/growth & development , Metabolomics , Plant Leaves/growth & development , Plant Leaves/metabolism , Seasons
2.
Data Brief ; 14: 607-611, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28879218

ABSTRACT

This article includes experimental data on the identification of epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3''Me) by 2-dimensional (2D) proton (1H) NMR analysis and on the information of amino acid and catechin compound profiles by HPLC analysis in leaf extracts of various tea cultivars. These data are related to the research article "Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism" (Ji et al., 2017) [1]. The assignment for EGCG3x''Me by 1H NMR analysis was also confirmed with spiking experiment of its pure chemical.

3.
Food Chem ; 233: 321-330, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28530581

ABSTRACT

Recently, we selected three tea (Camellia sinensis) cultivars that are rich in taste, epigallocatechin-3-O-gallate (EGCG) and epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3″Me) and then cultivated them through asexual propagation by cutting in the same region. In the present study, proton nuclear magnetic resonance (1H NMR)-based metabolomics was applied to characterize the metabotype and to understand the metabolic mechanism of these tea cultivars including wild type tea. Of the tea leaf metabolite variations, reverse associations of amino acid metabolism with catechin compound metabolism were found in the rich-taste, and EGCG- and EGCG3″Me-rich tea cultivars. Indeed, the metabolism of individual catechin compounds in the EGCG3″Me-rich cultivar differed from those of other tea cultivars. The current study highlights the distinct metabolism of various tea cultivars newly selected for cultivation and the important role of metabolomics in understanding the metabolic mechanism. Thus, comprehensive metabotyping is a useful method to assess and then develop a new plant cultivar.


Subject(s)
Camellia sinensis , Catechin , Plant Extracts , Tea
SELECTION OF CITATIONS
SEARCH DETAIL
...