Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698737

ABSTRACT

BACKGROUND AND PURPOSE: Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH: C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS: Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS: We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.

2.
Ren Fail ; 46(1): 2318413, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38369750

ABSTRACT

The prevalence of diabetic kidney disease (DKD) is increasing annually. Damage to and loss of podocytes occur early in DKD. tRNA-derived fragments (tRFs), originating from tRNA precursors or mature tRNAs, are associated with various illnesses. In this study, tRFs were identified, and their roles in podocyte injury induced by high-glucose (HG) treatment were explored. High-throughput sequencing of podocytes treated with HG was performed to identify differentially expressed tRFs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The expression levels of nephrin, podocin, and desmin were measured in podocytes after overexpression of tRF-1:24-Glu-CTC-1-M2 (tRF-1:24) and concomitant HG treatment. A total of 647 tRFs were identified, and 89 differentially expressed tRFs (|log2FC| ≥ 0.585; p ≤ .05) were identified in the HG group, of which 53 tRFs were downregulated and 36 tRFs were upregulated. The 10 tRFs with the highest differential expression were detected by real-time quantitative polymerase chain reaction (RT-qPCR), and these results were consistent with the sequencing results. GO analysis revealed that the biological process, cellular component, and molecular function terms in which the tRFs were the most enriched were cellular processes, cellular anatomical entities, and binding. KEGG pathway analysis revealed that tRFs may be involved in signaling pathways related to growth hormones, phospholipase D, the regulation of stem cell pluripotency, and T-/B-cell receptors. Overexpression of tRF-1:24, one of the most differentially expressed tRFs, attenuated podocyte injury induced by HG. Thus, tRFs might be potential biomarkers for podocyte injury in DKD.


Subject(s)
Glucose , Podocytes , Glucose/adverse effects , Glucose/pharmacology , Podocytes/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Signal Transduction , Diabetic Nephropathies/epidemiology
3.
J Cell Mol Med ; 28(3): e18099, 2024 02.
Article in English | MEDLINE | ID: mdl-38164021

ABSTRACT

Our previous study found that miR-26a alleviates aldosterone-induced tubulointerstitial fibrosis (TIF). However, the effect of miR-26a on TIF in diabetic kidney disease (DKD) remains unclear. This study clarifies the role and possible mechanism of exogenous miR-26a in controlling the progression of TIF in DKD models. Firstly, we showed that miR-26a was markedly decreased in type 2 diabetic db/db mice and mouse tubular epithelial cells (mTECs) treated with high glucose (HG, 30 mM) using RT-qPCR. We then used adeno-associated virus carrying miR-26a and adenovirus miR-26a to enhance the expression of miR-26a in vivo and in vitro. Overexpressing miR-26a alleviated the TIF in db/db mice and the extracellular matrix (ECM) deposition in HG-stimulated mTECs. These protective effects were caused by reducing expression of protease-activated receptor 4 (PAR4), which involved in multiple pro-fibrotic pathways. The rescue of PAR4 expression reversed the anti-fibrosis activity of miR-26a. We conclude that miR-26a alleviates TIF in DKD models by directly targeting PAR4, which may provide a novel molecular strategy for DKD therapy.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , MicroRNAs , Animals , Mice , Diabetic Nephropathies/metabolism , Fibrosis , MicroRNAs/metabolism , Receptors, Thrombin
4.
Acta Pharmacol Sin ; 45(5): 1032-1043, 2024 May.
Article in English | MEDLINE | ID: mdl-38286833

ABSTRACT

It is well established that the synthesis of extracellular matrix (ECM) in mesangial cells is a major determinant of diabetic kidney disease (DKD). Elucidating the major players in ECM synthesis may be helpful to provide promising candidates for protecting against DKD progression. tRF3-IleAAT is a tRNA-derived fragment (tRF) produced by nucleases at tRNA-specific sites, which is differentially expressed in the sera of patients with diabetes mellitus and DKD. In this study we investigated the potential roles of tRFs in DKD. Db/db mice at 12 weeks were adapted as a DKD model. The mice displayed marked renal dysfunction accompanied by significantly reduced expression of tRF3-IleAAT and increased ferroptosis and ECM synthesis in the kidney tissues. The reduced expression of tRF3-IleAAT was also observed in high glucose-treated mouse glomerular mesangial cells. We administered ferrostatin-1 (1 mg/kg, once every two days, i.p.) to the mice from the age of 12 weeks for 8 weeks, and found that inhibition of the onset of ferroptosis significantly improved renal function, attenuated renal fibrosis and reduced collagen deposition. Overexpression of tRF3-IleAAT by a single injection of AAV carrying tRF3-IleAAT via caudal vein significantly inhibited ferroptosis and ECM synthesis in DKD model mice. Furthermore, we found that the expression of zinc finger protein 281 (ZNF281), a downstream target gene of tRF3-IleAAT, was significantly elevated in DKD models but negatively regulated by tRF3-IleAAT. In high glucose-treated mesangial cells, knockdown of ZNF281 exerted an inhibitory effect on ferroptosis and ECM synthesis. We demonstrated the targeted binding of tRF3-IleAAT to the 3'UTR of ZNF281. In conclusion, tRF3-IleAAT inhibits ferroptosis by targeting ZNF281, resulting in the mitigation of ECM synthesis in DKD models, suggesting that tRF3-IleAAT may be an attractive therapeutic target for DKD.


Subject(s)
Diabetic Nephropathies , Extracellular Matrix , Ferroptosis , Animals , Ferroptosis/drug effects , Ferroptosis/physiology , Diabetic Nephropathies/metabolism , Extracellular Matrix/metabolism , Mice , Male , Mice, Inbred C57BL , Humans , Mesangial Cells/metabolism
5.
Cell Mol Life Sci ; 80(12): 347, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37943391

ABSTRACT

Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca2+-activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl-, and reducing intracellular Cl- significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Mice , Diabetic Nephropathies/genetics , Homeostasis , Mitochondria , Fibrosis
6.
PLoS One ; 18(10): e0293043, 2023.
Article in English | MEDLINE | ID: mdl-37856510

ABSTRACT

Podocyte injury plays a key role in the production of proteinuria and is closely related to the progression of chronic kidney disease (CKD). Alleviating podocyte injury is beneficial to prevent the occurrence and development of CKD. tRNA-derived RNA fragments (tRFs) are associated with podocytes injury processes such as protein binding, cell adhesion, synapses, the actin cytoskeleton. Our previous data showed that tRF-003634 tightly correlated with podocyte injury, while its effect remains unclear. This study aimed to investigate the role of tRF-003634 in podocyte injury and the potential mechanisms. The expression level of tRF-003634, nephrin, podocin and tRF-003634 targeted toll-like receptor 4 (TLR4) in podocytes and kidney tissues were examined by quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry. The biochemical indices were monitored and renal pathological changes were assessed by hematoxylin and eosin PAS staining. Furthermore, potential target genes of tRF-003634 were screened using high-throughput mRNA sequencing, and then confirmed by RNA pulse-chase analysis. The results showed that tRF-003634 was downregulated in adriamycin (Adr)-induced podocyte injury. Overexpression of tRF-003634 increased the expression of nephrin and podocin in vivo and in vitro and alleviated podocyte injury. Meanwhile, overexpression of tRF-003634 alleviated proteinuria and renal pathological damage. In addition, high-throughput sequencing after overexpression of tRF-003634 showed that TLR4 might be a downstream target gene. tRF-003634 can alleviate podocyte injury by reducing the stability of TLR4 mRNA, possibly by competing with TLR4 mRNA to bind to YTH domain-containing protein 1 (YTHDC1). In conclusion, tRF-003634 was underexpressed in Adr-induced podocyte injury, and its overexpression alleviated podocyte injury in vitro and in vivo by reducing the stability of TLR4 mRNA.


Subject(s)
Podocytes , Renal Insufficiency, Chronic , Doxorubicin/adverse effects , Doxorubicin/metabolism , Podocytes/metabolism , Proteinuria/pathology , Renal Insufficiency, Chronic/pathology , RNA, Messenger/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
7.
Acta Pharmacol Sin ; 44(12): 2455-2468, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37596398

ABSTRACT

Renal tubulointerstitial fibrosis (TIF) is considered as the final convergent pathway of diabetic nephropathy (DN) without effective therapies currently. MiRNAs play a key role in fibrotic diseases and become promising therapeutic targets for kidney diseases, while miRNA clusters, formed by the cluster arrangement of miRNAs on chromosomes, can regulate diverse biological functions alone or synergistically. In this study, we developed clustered miR-23a/27a/26a-loaded skeletal muscle satellite cells-derived exosomes (Exos) engineered with RVG peptide, and investigated their therapeutic efficacy in a murine model of DN. Firstly, we showed that miR-23a-3p, miR-26a-5p and miR-27a-3p were markedly decreased in serum samples of DN patients using miRNA sequencing. Meanwhile, we confirmed that miR-23a-3p, miR-26a-5p and miR-27a-3p were primarily located in proximal renal tubules and highly negatively correlated with TIF in db/db mice at 20 weeks of age. We then engineered RVG-miR-23a/27a/26a cluster loaded Exos derived from muscle satellite cells, which not only enhanced the stability of miR-23a/27a/26a cluster, but also efficiently delivered more miR-23a/27a/26a cluster homing to the injured kidney. More importantly, administration of RVG-miR-23a/27a/26a-Exos (100 µg, i.v., once a week for 8 weeks) significantly ameliorated tubular injury and TIF in db/db mice at 20 weeks of age. We revealed that miR-23a/27a/26a-Exos enhanced antifibrotic effects by repressing miRNA cluster-targeting Lpp simultaneously, as well as miR-27a-3p-targeting Zbtb20 and miR-26a-5p-targeting Klhl42, respectively. Knockdown of Lpp by injection of AAV-Lpp-RNAi effectively ameliorated the progression of TIF in DN mice. Taken together, we established a novel kidney-targeting Exo-based delivery system by manipulating the miRNA-23a/27a/26a cluster to ameliorate TIF in DN, thus providing a promising therapeutic strategy for DN.


Subject(s)
Diabetic Nephropathies , Exosomes , MicroRNAs , Satellite Cells, Skeletal Muscle , Animals , Humans , Mice , Diabetes Mellitus/therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Diabetic Nephropathies/therapy , Exosomes/metabolism , Fibrosis , MicroRNAs/metabolism , MicroRNAs/pharmacology , MicroRNAs/therapeutic use , Satellite Cells, Skeletal Muscle/metabolism , Diabetes Complications/therapy
8.
Exp Ther Med ; 26(1): 311, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37273759

ABSTRACT

Diabetic nephropathy (DN) is one of the most important causes of end-stage renal disease and current treatments are ineffective in preventing its progression. Transfer RNA (tRNA)-derived fragments (tRFs), which are small non-coding fragments derived from tRNA precursors or mature tRNAs, have a critical role in various human diseases. The present study aimed to investigate the expression profile and potential functions of tRFs in DN. High-throughput sequencing technology was employed to detect the differential serum levels of tRFs between DN and diabetes mellitus and to validate the reliability of the sequencing results using reverse transcription-quantitative PCR. Ultimately, six differentially expressed (DE) tRFs were identified (P<0.05; |log2fold change| ≥1), including three upregulated (tRF5-GluCTC, tRF5-AlaCGC and tRF5-ValCAC) and three downregulated tRFs (tRF5-GlyCCC, tRF3-GlyGCC and tRF3-IleAAT). Potential functions and regulatory mechanisms of these DE tRFs were further evaluated using an applied bioinformatics-based analysis. Gene ontology analysis revealed that the DE tRFs are mainly enriched in biological processes, including axon guidance, Rad51 paralog (Rad51)B-Rad51C-Rad51D-X-Ray repair cross-complementing 2 complex, nuclear factor of activated T-cells protein binding and fibroblast growth factor-activated receptor activity. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that they are associated with axon guidance, neurotrophin signaling, mTOR signaling, AMPK signaling and epidermal growth factor receptor family signaling pathways. In conclusion, the present findings indicated that tRFs were DE in DN and may be involved in the regulation of DN pathology through multiple pathways, thereby providing a new perspective for the study of DN therapeutic targets.

9.
Exp Ther Med ; 25(1): 26, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36561608

ABSTRACT

Transfer RNA-derived fragments (tRFs), a novel class of small non-coding RNA produced by the cleavage of pre- and mature tRNAs, are involved in various diseases. Renal tubulointerstitial fibrosis is a common final pathway in diabetic nephropathy (DN) in which hyperglycemia-induced tubular extracellular matrix (ECM) accumulation serves a vital role. The present study aimed to detect and investigate the role of tRFs in the accumulation of tubular ECM. Differentially expressed tRFs were analysed with high-throughput sequencing in primary mouse tubular epithelial cells treated with high glucose (HG). The Gene Ontology (GO) was used to analyze the potential molecular functions of these differentially expressed tRFs, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the associated signaling pathways involved in these differentially expressed tRFs. tRF-1:30-Gln-CTG-4 was overexpressed using tRF-1:30-Gln-CTG-4 mimic, followed by HG treatment. A total of 554 distinct tRFs were detected and 64 differentially expressed tRFs (fold change >2; P<0.05) were identified in tubular epithelial cells following high glucose (HG) treatment, among which 27 were upregulated and 37 were downregulated. Ten selected tRFs with the greatest difference (fold change >2; P<0.05) were verified to be consistent with small RNA-sequencing data, of which tRF-1:30-Gln-CTG-4 showed the most pronounced difference in expression and was significantly decreased in response to HG. GO analysis indicated that the differentially expressed tRFs were associated with 'cellular process', 'biological regulation' and 'metabolic process'. An analysis of the KEGG database suggested that these differentially expressed tRFs were involved in 'autophagy' and signaling pathways for 'forkhead box O', 'the mammalian target of rapamycin' and 'mitogen-activated protein kinase'. Finally, the overexpression of tRF-1:30-Gln-CTG-4 ameliorated HG-induced ECM accumulation in tubular epithelial cells. Therefore, the present study demonstrated that there may be a significant association between tRFs and HG-induced ECM accumulation in tubular epithelial cells; these differentially expressed tRFs warrant further study to explore the pathogenesis of DN.

10.
Int J Mol Med ; 51(2)2023 02.
Article in English | MEDLINE | ID: mdl-36524378

ABSTRACT

Renal tubulointerstitial fibrosis (TIF) is a hallmark in the continuous progression of chronic kidney disease (CKD), in which excessive activation of the renin­angiotensin­-aldosterone system serves a crucial role. Currently, there are no targeted therapies for the progression of TIF. microRNA (miR)­26a may be an ideal anti­fibrosis candidate molecule; however, the effect of miR­26 on aldosterone (ALD)­induced TIF remains unclear. This study aimed to elucidate the role of miR­26a in ALD­induced TIF. In the present study, we hypothesized that delivery of miR­26a by exosomes could attenuate ALD­induced TIF. miR­26a expression was downregulated in the kidney of ALD­induced mice compared with the mice in the sham group. Exosome­encapsulated miR­26a (Exo­miR­26a) was manufactured and injected into ALD­treated mice through the tail vein. In vivo experiments showed that Exo­miR­26a alleviated the downregulated miR­26a expression in the kidney, tubular injury and ALD­induced TIF, which was determined using Masson's trichrome staining and assessment of lipocalin 2, α­smooth muscle actin, collagen I and fibronectin expression. Moreover, in vitro experiments revealed that Exo­miR­26a inhibited epithelial­mesenchymal transition and extracellular matrix deposition in mouse tubular epithelial cells. Mechanistically, overexpressing miR­26a led to decreased expression levels of connective tissue growth factor by directly binding to its 3'­UTR and inhibiting the activation of SMAD3. These findings demonstrated that the exosomal delivery of miR­26a may alleviate ALD­induced TIF, which may provide new insights into the treatment of CKD.


Subject(s)
Exosomes , MicroRNAs , Renal Insufficiency, Chronic , Animals , Mice , 3' Untranslated Regions , Aldosterone/metabolism , Aldosterone/pharmacology , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Exosomes/genetics , Exosomes/metabolism , Fibrosis , Kidney/pathology , MicroRNAs/metabolism , MicroRNAs/pharmacology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Signal Transduction , Smad3 Protein/genetics , Smad3 Protein/metabolism
11.
Am J Physiol Renal Physiol ; 321(2): F225-F235, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34229478

ABSTRACT

Oxygen homeostasis disturbances play a critical role in the pathogenesis of acute kidney injury (AKI). The transcription factor hypoxia-inducible factor-1 (HIF-1) is a master regulator of adaptive responses to hypoxia. Aside from posttranslational hydroxylation, the mechanism of HIF-1 regulation in AKI remains largely unclear. In this study, the mechanism of HIF-α regulation in AKI was investigated. We found that tubular HIF-1α expression significantly increased at the transcriptional level in ischemia-reperfusion-, unilateral ureteral obstruction-, and sepsis-induced AKI models, which was closely associated with macrophage-dependent inflammation. Meanwhile, NF-κB, which plays a central role in the inflammation response, was involved in the increasing expression of HIF-1α in AKI, as evidenced by pharmacological modulation (NF-κB inhibitor BAY11-7082). Mechanistically, NF-κB directly bound to the HIF-1α promoter and enhanced its transcription, which occurred not only under hypoxic conditions but also under normoxic conditions. Moreover, the induced HIF-1α by inflammation protected against tubular injury in AKI. Thus, our findings not only provide novel insights into HIF-1 regulation in AKI but also offer to understand the pathophysiology of kidney diseases.NEW & NOTEWORTHY Here, the mechanism of hypoxia-inducible factor-α (HIF-α) regulation in acute kidney injury (AKI) was investigated. We found that tubular HIF-1α expression significantly increased at the transcriptional level, which was closely associated with macrophage-dependent inflammation. Meanwhile, NF-κB was involved in the increasing expression of HIF-1α in AKI. Mechanistically, NF-κB directly bound to the HIF-1α promoter and enhanced its transcription. Our findings not only provide novel insights into HIF-1 regulation in AKI but also offer to understand the pathophysiology of kidney diseases.


Subject(s)
Acute Kidney Injury/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/metabolism , NF-kappa B/metabolism , Acute Kidney Injury/genetics , Animals , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammation/genetics , Inflammation/metabolism , Kidney/drug effects , Mice , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , Nitriles/pharmacology , Sulfones/pharmacology
12.
JACC Basic Transl Sci ; 5(2): 148-166, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32140622

ABSTRACT

miR-155 was synthesized and loaded into exosomes in increased infiltration of macrophages in a uremic heart. The released exosomal fusion with the plasma membrane leads to the release of miR-155 into the cytosol and translational repression of forkhead transcription factors of the O class (FoxO3a) in cardiomyocytes. Finally, macrophage-derived miR-155-containing exosomes promoted cardiomyocyte pyroptosis and uremic cardiomyopathy changes (cardiac hypertrophy and fibrosis) by directly targeting FoxO3a in uremic mice.

13.
Nephron ; 144(2): 96-108, 2020.
Article in English | MEDLINE | ID: mdl-31661702

ABSTRACT

BACKGROUND: Chloroquine (CQ), a classic autophagy inhibitor, is used clinically for malaria prophylaxis and pulmonary hypertension treatment. The adverse effects of CQ on morphological and functional changes in the kidney were investigated in the current study due to CQ accumulation in the kidney. METHODS: Twelve male Sprague-Dawley rats were randomly divided into 2 groups for 4 weeks: group 1, control (n = 6); and group 2, CQ administration group (50 mg-1·kg per day ip; n = 6). Serum aldosterone and vasopressin were measured by radioimmunoassay. Immunofluorescence was used to colocalize Tunel with aquaporin 1, aquaporin 2 (AQP2), and Tamm-Horsfall protein. Expression of AQP2 and mineralocorticoid (MR) was detected by western blot and immunohistochemistry. RESULTS: In the present study, 4 weeks of CQ administration were shown to induce severe kidney injury, including glomerular sclerosis and tubular cells apoptosis, especially distal tubular cells. Decreased expression of LC3II/I and p-AKT was demonstrated in CQ-treated rats. Glomerular and proximal tubule injury were associated with impaired autophagy flux, and distal tubule injury may be associated with downregulated cyclic adenosine monophosphate (cAMP)/PKA/AKT signaling. Both MR and AQP2, which are mainly located in the distal tubule and collecting duct, were significantly reduced in CQ-treated rats, thus leading to increased exosomal secretion of AQP2 in urine. Additionally, chronic CQ administration increased aldosterone and vasopressin levels in serum, but lowered the blood pressure, glomerular filtration rate, and urine concentration. CONCLUSIONS: CQ administration damages glomerular, proximal tubule autophagy, and severe distal tubular cells apoptosis by inhibiting cAMP/PKA/AKT signaling.


Subject(s)
Autophagy/physiology , Chloroquine/toxicity , Kidney/drug effects , Animals , Apoptosis/drug effects , Aquaporin 2/analysis , Autophagy/drug effects , Cyclic AMP/physiology , Cyclic AMP-Dependent Protein Kinases/physiology , Kidney/pathology , Kidney/physiology , Proto-Oncogene Proteins c-akt/physiology , Rats , Rats, Sprague-Dawley , Receptors, Mineralocorticoid/analysis , Signal Transduction/drug effects
14.
Int J Mol Med ; 44(5): 1781-1788, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31545399

ABSTRACT

The reduction of podocyte injury is a key strategy in controlling proteinuria, which is the main early clinical manifestation of diabetic nephropathy (DN). Impaired autophagic flux is the primary mechanism responsible for podocyte injury in DN. The aim of the present study was to elucidate the effect of connexin 43 (Cx43) on impaired autophagic flux in podocyte injury and to explore its molecular mechanism of action in DN. Sprague­Dawley rats were administered streptozocin (STZ) to construct a DN animal model. Podocytes were incubated in media containing either buffer or high glucose (HG; 30 mM) for variable time periods. The podocytes were then examined and the mechanism of injury was investigated using an Annexin V/PI assay, immunofluorescence staining, western blotting, and RNA interference. In vivo, STZ­induced DN rats with or without Cx43 knockdown were established to observe the role of Cx43 in autophagic flux and podocyte injury. We observed that HG induced podocyte injury, accompanied by increases in Cx43 expression and impaired autophagic flux, as evidenced by the accumulation of LC3II/LC3I and p62. Interestingly, the silencing of Cx43 expression ameliorated autophagic flux impairment and reduced podocyte injury via suppression of the mammalian target of rapamycin pathway. Furthermore, impaired autophagic flux also blocked the degradation of Cx43. In vitro studies indicated that higher numbers of Annexin V/PI­positive podocytes, impaired autophagic flux and increased Cx43 expression were observed in HG­induced podocyte injury relative to the control group. The pathogenic effect of Cx43 on impaired autophagic flux and podocyte injury was also confirmed by Cx43 knockdown. The present study provided preliminary evidence indicating that the interdependence of Cx43 and impaired autophagic flux represents a novel mechanism of podocyte injury in DN. Hence, the Cx43­autophagy loop is a potentially relevant therapeutic target for the treatment of DN.


Subject(s)
Autophagy/physiology , Connexin 43/metabolism , Diabetic Nephropathies/metabolism , Podocytes/metabolism , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Glucose/metabolism , Male , Proteinuria/metabolism , RNA Interference/physiology , Rats , Rats, Sprague-Dawley , Streptozocin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...