Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Inflamm Res ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008037

ABSTRACT

BACKGROUND: Microglia, the main innate immune cells in the central nervous system, are key drivers of neuroinflammation, which plays a crucial role in the pathogenesis of neurodegenerative diseases. The Sin3/histone deacetylase (HDAC) complex, a highly conserved multiprotein co-repressor complex, primarily performs transcriptional repression via deacetylase activity; however, the function of SDS3, which maintains the integrity of the complex, in microglia remains unclear. METHODS: To uncover the regulatory role of the transcriptional co-repressor SDS3 in microglial inflammation, we used chromatin immunoprecipitation to identify SDS3 target genes and combined with transcriptomics and proteomics analysis to explore expression changes in cells following SDS3 knocking down. Subsequently, we validated our findings through experimental assays. RESULTS: Our analysis revealed that SDS3 modulates the expression of the upstream kinase ASK1 of the p38 MAPK pathway, thus regulating the activation of signaling pathways and ultimately influencing inflammation. CONCLUSIONS: Our findings provide important evidence of the contributions of SDS3 toward microglial inflammation and offer new insights into the regulatory mechanisms of microglial inflammatory responses.

2.
Pharmacol Res ; 204: 107209, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740147

ABSTRACT

Considerable progress has recently been made in cancer immunotherapy, including immune checkpoint blockade, cancer vaccine, and adoptive T cell methods. The lack of effective targets is a major cause of the low immunotherapy response rate in colorectal cancer (CRC). Here, we used a proteogenomic strategy comprising immunopeptidomics, whole exome sequencing, and 16 S ribosomal DNA sequencing analyses of 8 patients with CRC to identify neoantigens and bacterial peptides that can serve as antitumor targets. This study directly identified several personalized neoantigens and bacterial immunopeptides. Immunoassays showed that all neoantigens and 5 of 8 bacterial immunopeptides could be recognized by autologous T cells. Additionally, T cell receptor (TCR) αß sequencing revealed the TCR repertoire of epitope-reactive CD8+ T cells. Functional studies showed that T cell receptor-T (TCR-T) could be activated by epitope pulsed lymphoblastoid cells. Overall, this study comprehensively profiled the CRC immunopeptidome, revealing several neoantigens and bacterial peptides with potential to serve as immunotherapy targets in CRC.


Subject(s)
Antigens, Neoplasm , Colorectal Neoplasms , Immunotherapy , Proteogenomics , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Colorectal Neoplasms/genetics , Proteogenomics/methods , Immunotherapy/methods , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Male , Female , Aged , Middle Aged , Peptides/immunology , CD8-Positive T-Lymphocytes/immunology
3.
Mol Cell Proteomics ; 23(6): 100784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735538

ABSTRACT

Colorectal cancer (CRC) is characterized by high morbidity, high mortality, and limited response to immunotherapies. The peripheral immune system is an important component of tumor immunity, and enhancements of peripheral immunity help to suppress tumor progression. However, the functional alterations of the peripheral immune system in CRC are unclear. Here, we used mass spectrometry-based quantitative proteomics to establish a protein expression atlas for the peripheral immune system in CRC, including plasma and five types of immune cells (CD4+ T cells, CD8+ T cells, monocytes, natural killer cells, and B cells). Synthesizing the results of the multidimensional analysis, we observed an enhanced inflammatory phenotype in CRC, including elevated expression of plasma inflammatory proteins, activation of the inflammatory pathway in monocytes, and increased inflammation-related ligand-receptor interactions. Notably, we observed tumor effects on peripheral T cells, including altered cell subpopulation ratios and suppression of cell function. Suppression of CD4+ T cell function is mainly mediated by high expression levels of protein tyrosine phosphatases. Among them, the expression of protein tyrosine phosphatase receptor type J (PTPRJ) gradually increased with CRC progression; knockdown of PTPRJ in vitro could promote T cell activation, thereby enhancing peripheral immunity. We also found that the combination of leucine-rich α-2 glycoprotein 1 (LRG1) and apolipoprotein A4 (APOA4) had the best predictive ability for colorectal cancer and has the potential to be a biomarker. Overall, this study provides a comprehensive understanding of the peripheral immune system in CRC. It also offers insights regarding the potential clinical utilities of these peripheral immune characteristics as diagnostic indicators and therapeutic targets.


Subject(s)
Colorectal Neoplasms , Proteomics , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Proteomics/methods , Male , Female , Immune System/metabolism , Middle Aged , Aged , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology
4.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612472

ABSTRACT

Birinapant, an antagonist of the inhibitor of apoptosis proteins, upregulates MHCs in tumor cells and displays a better tumoricidal effect when used in combination with immune checkpoint inhibitors, indicating that Birinapant may affect the antigen presentation pathway; however, the mechanism remains elusive. Based on high-resolution mass spectrometry and in vitro and in vivo models, we adopted integrated genomics, proteomics, and immunopeptidomics strategies to study the mechanism underlying the regulation of tumor immunity by Birinapant from the perspective of antigen presentation. Firstly, in HT29 and MCF7 cells, Birinapant increased the number and abundance of immunopeptides and source proteins. Secondly, a greater number of cancer/testis antigen peptides with increased abundance and more neoantigens were identified following Birinapant treatment. Moreover, we demonstrate the existence and immunogenicity of a neoantigen derived from insertion/deletion mutation. Thirdly, in HT29 cell-derived xenograft models, Birinapant administration also reshaped the immunopeptidome, and the tumor exhibited better immunogenicity. These data suggest that Birinapant can reshape the tumor immunopeptidome with respect to quality and quantity, which improves the presentation of CTA peptides and neoantigens, thus enhancing the immunogenicity of tumor cells. Such changes may be vital to the effectiveness of combination therapy, which can be further transferred to the clinic or aid in the development of new immunotherapeutic strategies to improve the anti-tumor immune response.


Subject(s)
Antigen Presentation , Dipeptides , Indoles , Male , Animals , Humans , Combined Modality Therapy , Disease Models, Animal
5.
Theranostics ; 14(2): 662-680, 2024.
Article in English | MEDLINE | ID: mdl-38169511

ABSTRACT

Rationale: Cancer local recurrence increases the mortality of patients, and might be caused by field cancerization, a pre-malignant alteration of normal epithelial cells. It has been suggested that cancer-derived small extracellular vesicles (CDEs) may contribute to field cancerization, but the underlying mechanisms remain poorly understood. In this study, we aim to identify the key regulatory factors within recipient cells under the instigation of CDEs. Methods: In vitro experiments were performed to demonstrate that CDEs promote the expression of CREPT in normal epithelial cells. TMT-based quantitative mass spectrometry was employed to investigate the proteomic differences between normal cells and tumor cells. Loss-of-function approaches by CRISPR-Cas9 system were used to assess the role of CREPT in CDEs-induced field cancerization. RNA-seq was performed to explore the genes regulated by CREPT during field cancerization. Results: CDEs promote field cancerization by inducing the expression of CREPT in non-malignant epithelial cells through activating the ERK signaling pathway. Intriguingly, CDEs failed to induce field cancerization when CREPT was deleted, highlighting the importance of CREPT. Transcriptomic analyses revealed that CDEs elicited inflammatory responses, primarily through activation of the TNF signaling pathway. CREPT, in turn, regulates the transduction of downstream signals of TNF by modulating the expression of TNFR2 and PI3K, thereby promoting inflammation-to-cancer transition. Conclusion: CREPT not only serves as a biomarker for field cancerization, but also emerges as a target for preventing the cancer local recurrence.


Subject(s)
Extracellular Vesicles , Neoplasms , Humans , Cell Line, Tumor , Proteomics , Cell Cycle Proteins/metabolism , Cell Proliferation/genetics , Neoplasm Proteins/genetics , Extracellular Vesicles/metabolism , Neoplasms/genetics
6.
Mol Cell Proteomics ; 23(1): 100691, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072118

ABSTRACT

T cells play the most pivotal roles in antitumor immunity; the T-cell proteome and the differentially expressed proteins in the tumor immune microenvironment have rarely been identified directly from the clinical samples, especially for tumors that lack effective immunotherapy targets, such as colorectal cancer (CRC). In this study, we analyzed the protein expression pattern of the infiltrating T cells isolated from CRC patients using quantitative proteomics. CD4+ and CD8+ T cells were isolated from clinical samples and labeled by tandem mass tag reagents, and the differentially expressed proteins were quantified by mass spectrometry. The T-cell proteome profiling revealed dysfunctions in these tumor-infiltrating T cells. Specifically, antitumor immunity was suppressed because of differentially expressed metal ion transporters and immunity regulators. For the first time, lipocalin-2 (LCN2) was shown to be significantly upregulated in CD4+ T cells. Quantitative proteomic analysis of LCN2-overexpressed Jurkat cells showed that LCN2 damaged T cells by changes in iron transport. LCN2 induced T-cell apoptosis by reducing cellular iron concentration; moreover, the iron that was transported to the tumor microenvironment aided tumor cell proliferation, promoting tumor development. Meanwhile, LCN2 also influenced tumor progression through immune cytokines and cholesterol metabolism. Our results demonstrated that LCN2 has immunosuppressive functions that can promote tumor development; therefore, it is a potential immunotherapy target for CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Apoptosis , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation , Iron/metabolism , Lipocalin-2/metabolism , Proteome/metabolism , Proteomics , Tumor Microenvironment
7.
Int J Mol Sci ; 24(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37958984

ABSTRACT

Metastasis leads to a high mortality rate in colorectal cancer (CRC). Increased neutrophil extracellular traps (NETs) formation is one of the main causes of metastasis. However, the mechanism of NETs-mediated metastasis remains unclear and effective treatments are lacking. In this study, we found neutrophils from CRC patients have enhanced NETs formation capacity and increased NETs positively correlate with CRC progression. By quantitative proteomic analysis of clinical samples and cell lines, we found that decreased secreted protein acidic and rich in cysteine (SPARC) results in massive NETs formation and integrin α5ß1 is the hub protein of NETs-tumor cell interaction. Mechanistically, SPARC regulates the activation of the nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) pathway by interacting with the receptor for activated C kinase 1 (RACK1). Over-activated NADPH oxidase generates more reactive oxygen species (ROS), leading to the release of NETs. Then, NETs upregulate the expression of integrin α5ß1 in tumor cells, which enhances adhesion and activates the downstream signaling pathways to promote proliferation and migration. The combination of NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) and integrin α5ß1 inhibitor ATN-161 (Ac-PHSCN-NH2) effectively suppresses tumor progression in vivo. Our work reveals the mechanistic link between NETs and tumor progression and suggests a combination therapy against NETs-mediated metastasis for CRC.


Subject(s)
Colorectal Neoplasms , Extracellular Traps , Humans , Extracellular Traps/metabolism , NADPH Oxidases/metabolism , Integrin alpha5beta1/metabolism , Osteonectin/metabolism , Proteomics , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Colorectal Neoplasms/pathology
8.
J Clin Invest ; 133(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37815873

ABSTRACT

Many cancers harbor homologous recombination defects (HRDs). A HRD is a therapeutic target that is being successfully utilized in treatment of breast/ovarian cancer via synthetic lethality. However, canonical HRD caused by BRCAness mutations do not prevail in liver cancer. Here we report a subtype of HRD caused by the perturbation of a proteasome variant (CDW19S) in hepatitis B virus-bearing (HBV-bearing) cells. This amalgamate protein complex contained the 19S proteasome decorated with CRL4WDR70 ubiquitin ligase, and assembled at broken chromatin in a PSMD4Rpn10- and ATM-MDC1-RNF8-dependent manner. CDW19S promoted DNA end processing via segregated modules that promote nuclease activities of MRE11 and EXO1. Contrarily, a proteasomal component, ADRM1Rpn13, inhibited resection and was removed by CRL4WDR70-catalyzed ubiquitination upon commitment of extensive resection. HBx interfered with ADRM1Rpn13 degradation, leading to the imposition of ADRM1Rpn13-dependent resection barrier and consequent viral HRD subtype distinguishable from that caused by BRCA1 defect. Finally, we demonstrated that viral HRD in HBV-associated hepatocellular carcinoma can be exploited to restrict tumor progression. Our work clarifies the underlying mechanism of a virus-induced HRD subtype.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Liver Neoplasms/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Proteasome Endopeptidase Complex/metabolism , Transcription Factors/genetics , Hepatitis B/genetics , Homologous Recombination , Intracellular Signaling Peptides and Proteins/genetics
9.
Cell Death Differ ; 30(3): 766-778, 2023 03.
Article in English | MEDLINE | ID: mdl-36329235

ABSTRACT

Beige adipocytes in mammalian white adipose tissue (WAT) can reinforce fat catabolism and energy expenditure. Promoting beige adipocyte biogenesis is a tantalizing tactic for combating obesity and its associated metabolic disorders. Here, we report that a previously unidentified phosphorylation pattern (Thr166) in the DNA-binding domain of PPARγ regulates the inducibility of beige adipocytes. This unique posttranslational modification (PTM) pattern influences allosteric communication between PPARγ and DNA or coactivators, which impedes the PPARγ-mediated transactivation of beige cell-related gene expression in WAT. The genetic mutation mimicking T166 phosphorylation (p-T166) hinders the inducibility of beige adipocytes. In contrast, genetic or chemical intervention in this PTM pattern favors beige cell formation. Moreover, inhibition of p-T166 attenuates metabolic dysfunction in obese mice. Our results uncover a mechanism involved in beige cell fate determination. Moreover, our discoveries provide a promising strategy for guiding the development of novel PPARγ agonists for the treatment of obesity and related metabolic disorders.


Subject(s)
Adipocytes, Beige , Animals , Mice , Adipocytes, Beige/metabolism , Phosphorylation , PPAR gamma/metabolism , Obesity/genetics , Adipose Tissue, White/metabolism , Mammals/metabolism
10.
Cell Rep ; 40(3): 111116, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858573

ABSTRACT

p62, a well-known adaptor of autophagy, plays multiple functions in response to various stresses. Here, we report a function for p62 in base excision repair that is distinct from its known functions. Loss of p62 impairs base excision repair capacity and increases the sensitivity of cancer cells to alkylating and oxidizing agents. In response to alkylative and oxidative damage, p62 is accumulated in the nucleus,acetylated by hMOF,and deacetylated by SIRT7, and acetylated p62 is recruited to chromatin. The chromatin-enriched p62 directly interacts with APE1, a key enzyme of the BER pathway, and promotes its endonuclease activity, which facilitates BER and cell survival. Collectively, our findings demonstrate that p62 is a regulator of BER and provide further rationale for targeting p62 as a cancer therapeutic strategy.


Subject(s)
DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase , Acetylation , Cell Survival , Chromatin , DNA Damage , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
11.
J Org Chem ; 87(4): 1986-1995, 2022 02 18.
Article in English | MEDLINE | ID: mdl-34280307

ABSTRACT

Foslevodopa (FLD, levodopa 4'-monophosphate, 3) and foscarbidopa (FCD, carbidopa 4'-monophosphate, 4) were identified as water-soluble prodrugs of levodopa (LD, 1) and carbidopa (CD, 2), respectively, which are useful for the treatment of Parkinson's disease. Herein, we describe asymmetric syntheses of FLD (3) and FCD (4) drug substances and their manufacture at pilot scale. The synthesis of FLD (3) employs a Horner-Wadsworth-Emmons olefination reaction followed by enantioselective hydrogenation of the double bond as key steps to introduce the α-amino acid moiety with the desired stereochemistry. The synthesis of FCD (4) features a Mizoroki-Heck reaction followed by enantioselective hydrazination to install the quaternary chiral center bearing a hydrazine moiety.


Subject(s)
Parkinson Disease , Pharmaceutical Preparations , Carbidopa , Humans , Hydrogenation , Levodopa/therapeutic use , Parkinson Disease/drug therapy
12.
Chem Sci ; 12(29): 10076-10082, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34349971

ABSTRACT

A novel and practical desymmetrization tactic is described to access a new class of pibrentasvir prodrugs. The homotopic benzimidazoles of pibrentasvir (PIB) are differentiated via a one-pot di-Boc/mono-de-Boc selective N-Boc protection and formaldehyde adduct formation sequence, both enabled by crystallization-induced selectivity. The first step represents the only known application of the Horeau principle of statistical amplification for C 2-symmetric polyheterocycle regioselective functionalization. The resulting versatile intermediate is employed in the high-yielding preparation of several pibrentasvir prodrug candidates.

13.
Mol Cell Proteomics ; 20: 100121, 2021.
Article in English | MEDLINE | ID: mdl-34265469

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Patients with TNBC have poor overall survival because of limited molecular therapeutic targets. Recently, exosomes have been recognized as key mediators in cancer progression, but the molecular components and function of TNBC-derived exosomes remain unknown. The main goal of this study was to reveal the proteomic landscape of serum exosomes derived from ten patients with TNBC and 17 healthy donors to identify potential therapeutic targets. Using a tandem mass tag-based quantitative proteomics approach, we characterized the proteomes of individual patient-derived serum exosomes, identified exosomal protein signatures specific to patients with TNBC, and filtered out differentially expressed proteins. Most importantly, we found that the tetraspanin CD151 expression levels in TNBC-derived serum exosomes were significantly higher than those exosomes from healthy subjects, and we validated our findings with samples from 16 additional donors. Furthermore, utilizing quantitative proteomics approach to reveal the proteomes of CD151-deleted exosomes and cells, we found that exosomal CD151 facilitated secretion of ribosomal proteins via exosomes while inhibiting exosome secretion of complement proteins. Moreover, we proved that CD151-deleted exosomes significantly decreased the migration and invasion of TNBC cells. This is the first comparative study of the proteomes of TNBC patient-derived and CD151-deleted exosomes. Our findings indicate that profiling of TNBC-derived exosomal proteins is a useful tool to extend our understanding of TNBC, and exosomal CD151 may be a potential therapeutic target for TNBC.


Subject(s)
Exosomes/metabolism , Proteome/metabolism , Tetraspanin 24/metabolism , Triple Negative Breast Neoplasms/metabolism , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Female , Humans , Middle Aged , Protein Interaction Maps , Tetraspanin 24/genetics , Triple Negative Breast Neoplasms/blood
14.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: mdl-34108240

ABSTRACT

DNA replication is dramatically slowed down under replication stress. The regulation of replication speed is a conserved response in eukaryotes and, in fission yeast, requires the checkpoint kinases Rad3ATR and Cds1Chk2 However, the underlying mechanism of this checkpoint regulation remains unresolved. Here, we report that the Rad3ATR-Cds1Chk2 checkpoint directly targets the Cdc45-MCM-GINS (CMG) replicative helicase under replication stress. When replication forks stall, the Cds1Chk2 kinase directly phosphorylates Cdc45 on the S275, S322, and S397 residues, which significantly reduces CMG helicase activity. Furthermore, in cds1Chk2 -mutated cells, the CMG helicase and DNA polymerases are physically separated, potentially disrupting replisomes and collapsing replication forks. This study demonstrates that the intra-S phase checkpoint directly regulates replication elongation, reduces CMG helicase processivity, prevents CMG helicase delinking from DNA polymerases, and therefore helps preserve the integrity of stalled replisomes and replication forks.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase , Multienzyme Complexes , S Phase Cell Cycle Checkpoints , Schizosaccharomyces/metabolism , Alleles , DNA Helicases/metabolism , DNA Replication/drug effects , DNA-Directed DNA Polymerase/metabolism , Hydroxyurea/pharmacology , Models, Biological , Multienzyme Complexes/metabolism , Multiprotein Complexes/metabolism , Mutation/genetics , Phosphorylation/drug effects , S Phase Cell Cycle Checkpoints/drug effects , Schizosaccharomyces/drug effects , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
15.
J Chem Inf Model ; 61(3): 1412-1426, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33661005

ABSTRACT

Drug design with patient centricity for ease of administration and pill burden requires robust understanding of the impact of chemical modifications on relevant physicochemical properties early in lead optimization. To this end, we have developed a physics-based ensemble approach to predict aqueous thermodynamic crystalline solubility, with a 2D chemical structure as the input. Predictions for the bromodomain and extraterminal domain (BET) inhibitor series show very close match (0.5 log unit) with measured thermodynamic solubility for cases with low crystal anisotropy and good match (1 log unit) for high anisotropy structures. The importance of thermodynamic solubility is clearly demonstrated by up to a 4 log unit drop in solubility compared to kinetic (amorphous) solubility in some cases and implications thereof, for instance on human dose. We have also demonstrated that incorporating predicted crystal structures in thermodynamic solubility prediction is necessary to differentiate (up to 4 log unit) between solubility of molecules within the series. Finally, our physics-based ensemble approach provides valuable structural insights into the origins of 3-D conformational landscapes, crystal polymorphism, and anisotropy that can be leveraged for both drug design and development.


Subject(s)
Physics , Water , Humans , Molecular Conformation , Solubility , Thermodynamics
16.
Mol Cancer Ther ; 20(6): 999-1008, 2021 06.
Article in English | MEDLINE | ID: mdl-33785651

ABSTRACT

Since gaining approval for the treatment of chronic lymphocytic leukemia (CLL), the BCL-2 inhibitor venetoclax has transformed the treatment of this and other blood-related cancers. Reflecting the large and hydrophobic BH3-binding groove within BCL-2, venetoclax has significantly higher molecular weight and lipophilicity than most orally administered drugs, along with negligible water solubility. Although a technology-enabled formulation successfully achieves oral absorption in humans, venetoclax tablets have limited drug loading and therefore can present a substantial pill burden for patients in high-dose indications. We therefore generated a phosphate prodrug (3, ABBV-167) that confers significantly increased water solubility to venetoclax and, upon oral administration to healthy volunteers either as a solution or high drug-load immediate release tablet, extensively converts to the parent drug. Additionally, ABBV-167 demonstrated a lower food effect with respect to venetoclax tablets. These data indicate that beyond-rule-of-5 molecules can be successfully delivered to humans via a solubility-enhancing prodrug moiety to afford robust exposures of the parent drug following oral dosing.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Prodrugs/therapeutic use , Sulfonamides/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Cross-Over Studies , Female , Healthy Volunteers , Humans , Prodrugs/pharmacology , Sulfonamides/pharmacology
17.
Cell ; 184(5): 1314-1329.e10, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33626331

ABSTRACT

End resection in homologous recombination (HR) and HR-mediated repair of DNA double-strand breaks (DSBs) removes several kilobases from 5' strands of DSBs, but 3' strands are exempted from degradation. The mechanism by which the 3' overhangs are protected has not been determined. Here, we established that the protection of 3' overhangs is achieved through the transient formation of RNA-DNA hybrids. The DNA strand in the hybrids is the 3' ssDNA overhang, while the RNA strand is newly synthesized. RNA polymerase III (RNAPIII) is responsible for synthesizing the RNA strand. Furthermore, RNAPIII is actively recruited to DSBs by the MRN complex. CtIP and MRN nuclease activity is required for initiating the RNAPIII-mediated RNA synthesis at DSBs. A reduced level of RNAPIII suppressed HR, and genetic loss > 30 bp increased at DSBs. Thus, RNAPIII is an essential HR factor, and the RNA-DNA hybrid is an essential repair intermediate for protecting the 3' overhangs in DSB repair.


Subject(s)
RNA Polymerase III/metabolism , Recombinational DNA Repair , Cell Cycle , Cell Line, Tumor , DNA Breaks, Double-Stranded , Endodeoxyribonucleases/genetics , HEK293 Cells , Humans , MRE11 Homologue Protein/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nucleic Acid Hybridization , RNA/chemistry
18.
Nephrol Dial Transplant ; 36(5): 782-792, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33351144

ABSTRACT

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is characterized by predominant IgA deposition in the glomerular mesangium. Previous studies have proved that renal-deposited IgA in IgAN came from circulating IgA1-containing complexes (CICs). METHODS: To explore the composition of CICs in IgAN, we isolated CICs from IgAN patients and healthy controls and then quantitatively analyzed them by mass spectrometry. Meanwhile, the isolated CICs were used to treat human mesangial cells to monitor mesangial cell injury. Using the protein content and injury effects, the key constituent in CICs was identified. Then the circulating levels of identified key constituent-IgA complex were detected in an independent population by an in-house-developed enzyme-linked immunosorbent assay. RESULTS: By comparing the proteins of CICs between IgAN patients and controls, we found that 14 proteins showed significantly different levels. Among them, α1-microglobulin content in CICs was associated with not only in vitro mesangial cell proliferation and monocyte chemoattractant protein 1 secretion, but also in vivo estimated glomerular filtration rate (eGFR) levels and tubulointerstitial lesions in IgAN patients. Moreover, we found α1-microglobulin was prone to bind aberrant glycosylated IgA1. Additionally, elevated circulating IgA-α1-microglobulin complex levels were detected in an independent IgAN population and IgA-α1-microglobulin complex levels were correlated with hypertension, eGFR levels and Oxford T- scores in these IgAN patients. CONCLUSIONS: Our results suggest that the IgA-α1-microglobulin complex is an important constituent in CICs and that circulating IgA-α1-microglobulin complex detection might serve as a potential noninvasive biomarker detection method for IgAN.


Subject(s)
Mass Spectrometry , Adult , Alpha-Globulins , Biomarkers/metabolism , Enzyme-Linked Immunosorbent Assay , Glomerular Mesangium/pathology , Glomerulonephritis, IGA/pathology , Glycosylation , Humans , Immunoglobulin A , Kidney/pathology , Male , Mesangial Cells/metabolism
19.
Adv Sci (Weinh) ; 7(22): 2001417, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33240752

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, in which the higher frequency of cancer stem cells (CSCs) correlates with the poor clinical outcome. An aberrant activation of CDK5 is found to associate with TNBC progression closely. CDK5 mediates PPARγ phosphorylation at its Ser 273, which induces CD44 isoform switching from CD44s to CD44v, resulting in an increase of stemness of TNBC cells. Blocking CDK5/pho-PPARγ significantly reduces CD44v+ BCSCs population in tumor tissues, thus abrogating metastatic progression in TNBC mouse model. Strikingly, diminishing stemness transformation reverses immunosuppressive microenvironment and enhances anti-PD-1 therapeutic efficacy on TNBC. Mechanistically, CDK5 switches the E3 ubiquitin ligase activity of PPARγ and directly protects ESRP1 from a ubiquitin-dependent proteolysis. This finding firstly indicates that CDK5 blockade can be a potent strategy to diminish stemness transformation and increase the response to PD-1 blockade in TNBC therapy.

20.
Nat Cell Biol ; 21(10): 1273-1285, 2019 10.
Article in English | MEDLINE | ID: mdl-31548606

ABSTRACT

Chromosome translocation is a major cause of the onset and progression of diverse types of cancers. However, the mechanisms underlying this process remain poorly understood. Here, we identified a non-homologous end-joining protein, IFFO1, which structurally forms a heterotetramer with XRCC4. IFFO1 is recruited to the sites of DNA damage by XRCC4 and promotes the repair of DNA double-strand breaks in a parallel pathway with XLF. Interestingly, IFFO1 interacts with lamin A/C, forming an interior nucleoskeleton. Inactivating IFFO1 or its interaction with XRCC4 or lamin A/C leads to increases in both the mobility of broken ends and the frequency of chromosome translocation. Importantly, the destruction of this nucleoskeleton accounts for the elevated frequency of chromosome translocation in many types of cancer cells. Our results reveal that the lamin A/C-IFFO1-constituted nucleoskeleton prevents chromosome translocation by immobilizing broken DNA ends during tumorigenesis.


Subject(s)
Carcinogenesis/genetics , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA-Binding Proteins/metabolism , Intermediate Filament Proteins/metabolism , Lamin Type A/metabolism , Translocation, Genetic , Animals , Carcinoma/genetics , Chromosomes, Human , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , Intermediate Filament Proteins/genetics , Mice , Nuclear Matrix/metabolism , Nuclear Matrix-Associated Proteins/chemistry , Nuclear Matrix-Associated Proteins/metabolism , Nuclear Matrix-Associated Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...