Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 217(11): 3796-3808, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30171044

ABSTRACT

The nucleus is physically linked to the cytoskeleton, adhesions, and extracellular matrix-all of which sustain forces, but their relationships to DNA damage are obscure. We show that nuclear rupture with cytoplasmic mislocalization of multiple DNA repair factors correlates with high nuclear curvature imposed by an external probe or by cell attachment to either aligned collagen fibers or stiff matrix. Mislocalization is greatly enhanced by lamin A depletion, requires hours for nuclear reentry, and correlates with an increase in pan-nucleoplasmic foci of the DNA damage marker γH2AX. Excess DNA damage is rescued in ruptured nuclei by cooverexpression of multiple DNA repair factors as well as by soft matrix or inhibition of actomyosin tension. Increased contractility has the opposite effect, and stiff tumors with low lamin A indeed exhibit increased nuclear curvature, more frequent nuclear rupture, and excess DNA damage. Additional stresses likely play a role, but the data suggest high curvature promotes nuclear rupture, which compromises retention of DNA repair factors and favors sustained damage.


Subject(s)
Cell Nucleus/metabolism , DNA Repair , Histones/metabolism , Lamin Type A/metabolism , A549 Cells , Cell Nucleus/genetics , Histones/genetics , Humans , Lamin Type A/genetics
2.
Curr Biol ; 27(2): 210-223, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-27989676

ABSTRACT

Migration through micron-size constrictions has been seen to rupture the nucleus, release nuclear-localized GFP, and cause localized accumulations of ectopic 53BP1-a DNA repair protein. Here, constricted migration of two human cancer cell types and primary mesenchymal stem cells (MSCs) increases DNA breaks throughout the nucleoplasm as assessed by endogenous damage markers and by electrophoretic "comet" measurements. Migration also causes multiple DNA repair proteins to segregate away from DNA, with cytoplasmic mis-localization sustained for many hours as is relevant to delayed repair. Partial knockdown of repair factors that also regulate chromosome copy numbers is seen to increase DNA breaks in U2OS osteosarcoma cells without affecting migration and with nucleoplasmic patterns of damage similar to constricted migration. Such depletion also causes aberrant levels of DNA. Migration-induced nuclear damage is nonetheless reversible for wild-type and sub-cloned U2OS cells, except for lasting genomic differences between stable clones as revealed by DNA arrays and sequencing. Gains and losses of hundreds of megabases in many chromosomes are typical of the changes and heterogeneity in bone cancer. Phenotypic differences that arise from constricted migration of U2OS clones are further illustrated by a clone with a highly elongated and stable MSC-like shape that depends on microtubule assembly downstream of the transcription factor GATA4. Such changes are consistent with reversion to a more stem-like state upstream of cancerous osteoblastic cells. Migration-induced genomic instability can thus associate with heritable changes.


Subject(s)
Bone Neoplasms/genetics , Cell Movement , DNA Damage , DNA Repair , Genome, Human , Osteosarcoma/genetics , Bone Neoplasms/pathology , Cell Nucleus , Genetic Variation , Genomic Instability , Humans , Osteosarcoma/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...