Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 167: 36-44, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33711416

ABSTRACT

Fluorescent imaging of cellular superoxide anion radical (O2•-) is of great significance to investigate reactive oxygen species-related pathophysiological processes and drug metabolism. However, the application of this technique is far away from maximum partially due to the lack of suitable probes. In this work, we propose a new strategy for design of near-infrared (NIR) O2•- fluorescent probes in which p-cresol is used as a self-immolative linker to conjugate the NIR fluorophore DDAO (9H-1,3-Dichloro-7-hydroxy-9,9-dimethylacridine-2-one) with the O2•--sensing group (i.e., trifluoromethanesulfonate). The introduction of self-immolative linker effectively increases the self-stability of these probes under physiological conditions. Importantly, the electron-withdrawing halogen substituents on the linker greatly enhance the sensitivity of the probes to O2•-. As such, the representative probe DLS4 exhibits high self-stability over a broad range of pHs (5.0-8.5), high selectivity as well as excellent sensitivity to O2•- with a detection limit (LOD) of 7.3 nM and 720-fold fluorescence enhancement upon reaction with O2•-. Moreover, DLS4 enables imaging of O2•- generation in PMA-stimulated RAW 264.7 cells and HeLa cells, and the fluorescence intensities are proportional to the PMA concentrations. In addition, the doxorubicin-induced cytotoxicity of H9c2 cells was also evaluated using DLS4. The present study provides a novel strategy for molecular design of small-molecule O2•- fluorescent probes and the resulting probes show great potential as reliable tools to study the development and progression of O2•--related diseases and drug metabolism in various systems.


Subject(s)
Fluorescent Dyes , Superoxides , Fluorescence , HeLa Cells , Humans , Reactive Oxygen Species
2.
Analyst ; 145(14): 4964-4971, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32510063

ABSTRACT

Tetrathiatriarylmethyl (TAM, trityl) radicals have found wide applications in electron paramagnetic resonance (EPR) oximetry. However, the biomedical applications of TAM radicals were exclusively limited to an extracellular region owing to their negatively charged nature. The intracellular delivery of TAM radicals still remains a challenge. In the present work, we report a liposome-based method to encapsulate the water-soluble Finland trityl radical CT-03 for its intracellular delivery. Using the thin lipid film hydration method, CT-03-loaded liposomes were prepared from DSPC/cholesterol/DOTAP with a mean size of 167.5 ± 2.4 nm and a zeta potential of 27.8 ± 0.8 mV. EPR results showed that CT-03 was entrapped into the liposomes and still exhibited good oxygen (O2) sensitivity. Moreover, CT-03 was successfully delivered into HepG2 cells and HUVECs using the CT-03-loaded liposomes. Importantly, the combination of the liposome-encapsulated radical CT-03 and the other TAM radical CT02-H enabled simultaneous measurements of the intracellular and extracellular O2 concentrations and O2 consumption rates in HepG2 cells. Our present study provides a new approach for intracellular delivery of TAM radicals and could significantly expand their biomedical applications.


Subject(s)
Liposomes , Trityl Compounds , Electron Spin Resonance Spectroscopy , Finland , Free Radicals , Oximetry
3.
Org Biomol Chem ; 18(12): 2321-2325, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32159569

ABSTRACT

The host-guest interaction of nitroxide radicals with water-soluble pillar[n]arenes was studied for the first time by electron paramagnetic resonance spectroscopy and NMR spectroscopy. Our results showed that this interaction strongly depended on the 4-substituents of nitroxides and the cavity size of pillar[n]arenes. The host-guest interaction with water-soluble pillar[6]arene WP6 effectively increased the thermodynamic and kinetic stability of nitroxide radical 4-AT toward ascorbic acid, thus expanding its potential biomedical applications.

4.
Angew Chem Int Ed Engl ; 59(2): 928-934, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31657108

ABSTRACT

Biothiols, such as glutathione (GSH), homocysteine (Hcy), and cysteine (Cys), coexist in biological systems with diverse biological roles. Thus, analytical techniques that can detect, quantify, and distinguish between multiple biothiols are desirable but challenging. Herein, we demonstrate the simultaneous detection and quantitation of multiple biothiols, including up to three different biothiols in a single sample, using electron paramagnetic resonance (EPR) spectroscopy and a trityl-radical-based probe (MTST). We term this technique EPR thiol-trapping. MTST could trap thiols through its methanethiosulfonate group to form the corresponding disulfide conjugate with an EPR spectrum characteristic of the trapped thiol. MTST was used to investigate effects of l-buthionine sulfoximine (BSO) and pyrrolidine dithiocarbamate (PDTC) on the efflux of GSH and Cys from HepG2 cells.


Subject(s)
Biosensing Techniques/methods , Electron Spin Resonance Spectroscopy/methods , Mesylates/chemistry , Sulfhydryl Compounds/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...