Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS PharmSciTech ; 24(8): 235, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37973629

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic interstitial lung disease with unclear etiology and increasing prevalence. Pulmonary administration can make the drug directly reach the lung lesion location and reduce systemic toxic and side effects. The effectiveness of lenalidomide (Len) liposomal lung delivery in idiopathic pulmonary fibrosis was investigated. Len liposomes (Len-Lip) were prepared from soybean lecithin, cholesterol (Chol), and medicine in different weight ratios by thin film hydration method. The Len-Lip were spherical in shape with an average size of 226.7 ± 1.389 nm. The liposomes with a higher negative zeta potential of around - 34 mV, which was conducive to improving stability by repelling each other. The drug loading and encapsulation rate were 2.42 ± 0.07% and 85.47 ± 2.42%. Len-Lip had little toxicity at the cellular level and were well taken up by cells. At bleomycin-induced pulmonary fibrosis model mice, inhalation Len-Lip could improve lung function and decrease lung hydroxyproline contents, and alleviate pulmonary fibrosis state. Inhalation Len-Lip provided a reference for the treatment of idiopathic pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Liposomes , Mice , Animals , Liposomes/pharmacology , Bleomycin/adverse effects , Lenalidomide/pharmacology , Lenalidomide/therapeutic use , Lung , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology
2.
AAPS PharmSciTech ; 23(1): 29, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34931279

ABSTRACT

The anti-tumor effect of selenium nanoparticles (SeNPs) has received more and more attention. However, the clinical application of SeNPs is not optimistic due to the poor stability. To improve the stability of SeNPs, many polymers are used to modify the SeNPs. However, most of the polymers are not approved by FDA. It is significant to develop a SeNPs product with good stability for clinic application. Dextran 70,000 (T70) and poloxamer 188 (P188) are FDA-approved pharmaceutical injection excipients. In this study, we decorate SeNPs with T70 and P188 and assess the physicochemical characterization, storage stability, and anti-tumor activities of T70-SeNPs and P188-SeNPs. Transmission electron microscopy (TEM) shows that T70-SeNPs and P188-SeNPs are spherical particles with particle sizes of 110 nm and 60 nm respectively. Fourier-Transform Infrared Spectra (FT-IR) show that T70 or P188 can interact with SeNPs through hydrogen bonding. Stability study shows that P188-SeNPs freeze-dried powder and T70-SeNPs freeze-dried powder remain stable at 4℃ for 6 months. T70-SeNPs and P188-SeNPs can aggregate in cell matrix and play an anti-tumor role to HepG2 by promoting apoptosis, increasing reactive oxygen species (ROS) content and reducing mitochondrial membrane potential (MMP). This study can provide reference for industrial production of SeNPs products.


Subject(s)
Nanoparticles , Selenium , Dextrans , Poloxamer , Powders , Spectroscopy, Fourier Transform Infrared
3.
Front Pharmacol ; 9: 392, 2018.
Article in English | MEDLINE | ID: mdl-29740318

ABSTRACT

Human skin exposed to solar ultraviolet radiation (UVR) results in a dramatic increase in the production of reactive oxygen species (ROS). The sudden increase in ROS shifts the natural balance toward a pro-oxidative state, resulting in oxidative stress. The detrimental effects of oxidative stress occur through multiple mechanisms that involve alterations to proteins and lipids, induction of inflammation, immunosuppression, DNA damage, and activation of signaling pathways that affect gene transcription, cell cycle, proliferation, and apoptosis. All of these alterations promote carcinogenesis and therefore, regulation of ROS levels is critical to the maintenance of normal skin homeostasis. Several botanical products have been found to exhibit potent antioxidant capacity and the ability to counteract UV-induced insults to the skin. These natural products exert their beneficial effects through multiple pathways, including some known to be negatively affected by solar UVR. Aging of the skin is also accelerated by UVR exposure, in particular UVA rays that penetrate deep into the epidermis and the dermis where it causes the degradation of collagen and elastin fibers via oxidative stress and activation of matrix metalloproteinases (MMPs). Because natural compounds are capable of attenuating some of the UV-induced aging effects in the skin, increased attention has been generated in the area of cosmetic sciences. The focus of this review is to cover the most prominent phytoproducts with potential to mitigate the deleterious effects of solar UVR and suitability for use in topical application.

4.
AMB Express ; 6(1): 120, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27878786

ABSTRACT

Recombinant Escherichia coli is a desirable platform for the production of many biological compounds including poly(3-hydroxyalkanoates), a class of naturally occurring biodegradable polyesters with promising biomedical and material applications. Although the controlled production of desirable polymers is possible with the utilization of fatty acid feedstocks, a central challenge to this biosynthetic route is the improvement of the relatively low polymer yield, a necessary factor of decreasing the production costs. In this study we sought to address this challenge by deleting arcA and ompR, two global regulators with the capacity to inhibit the uptake and activation of exogenous fatty acids. We found that polymer yields in a ΔarcA mutant increased significantly with respect to the parental strain. In the parental strain, PHV yields were very low but improved 64-fold in the ΔarcA mutant (1.92-124 mg L-1) The ΔarcA mutant also allowed for modest increases in some medium chain length polymer yields, while weight average molecular weights improved by approximately 1.5-fold to 12-fold depending on the fatty acid substrate utilized. These results were supported by an analysis of differential gene expression, which showed that the key genes (fadD, fadL, and fadE) encoding fatty acid degradation enzymes were all upregulated by 2-, 10-, and 31-fold in an ΔarcA mutant, respectively. Additionally, the short chain length fatty acid uptake genes atoA, atoE and atoD were upregulated by 103-, 119-, and 303-fold respectively, though these values are somewhat inflated due to low expression in the parental strain. Overall, this study demonstrates that arcA is an important target to improve PHA production from fatty acids.

SELECTION OF CITATIONS
SEARCH DETAIL
...