Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(5): 6848-6858, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36693011

ABSTRACT

Alumina aerogels are desirable for lightweight and highly efficient thermal insulation. However, they are typically constrained by brittleness and structural collapse at high temperatures. The manufacture of alumina aerogels with ultralow thermal conductivity and excellent thermal stability at high temperatures beyond 1300 °C is still challenging. Herein, alumina aerogels with superior ultrahigh-temperature-resistant and thermal insulation were successfully prepared by assembling the α-Al2O3 nanosheets with silica sols as the high-temperature binders. Benefiting from the generation of the mullite-covered alumina biphasic structure, the α-Al2O3 nanosheet-based aerogels (ANSAs) exhibit excellent thermal and chemical stabilities even after calcination at as high as 1600 °C. The ANSAs had a low thermal conductivity (0.029 W·m-1·K-1 at room temperature), structural stability with a measured compressive strength of 0.6 MPa, and good thermal shock resistance. Furthermore, the 2D α-alumina@mullite core-shell sheets were also prepared as assembly units to construct aerogels (AMSAs). This core-shell structure can improve temperature resistance through inter-lattice suppression under continuous energy input at high temperatures. The AMSAs have a linear shrinkage of only 2.7% after calcination at 1600 °C for 30 min, further improving the temperature resistance, making them an ideal super-insulating material for applications at extremely high temperatures.

2.
Sensors (Basel) ; 18(7)2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29958418

ABSTRACT

The motivation of this work is to explore the possibility of typhoon wave retrieval (the main parameter is significant wave height (SWH)) for C-band Gaofen (GF-3) synthetic aperture radar (SAR) with a wide swath coverage (>400 km). We aim to establish an analysis of a typhoon wave in the subresolution-scale (approximately 20 × 20 km²) on GF-3 SAR through SAR-measured parameters, including a normalized radar cross section (NRCS) and variance of the normalized SAR image (herein called cvar), which are the basic variables in an empirical wave retrieval algorithm and are independent of visible wave streaks. Several typhoons around the China Seas were captured by Chinese GF-3 SAR in 2017; e.g., Noru, Doksuri, Talim and Hato. The wave fields simulated from the third-generation numerical wave model WAVEWATCH-III (WW3) are collocated with these images. In general, the distribution patterns of the typhoon waves from the WW3 model are consistent with wave fields from the European Centre for Medium-Range Weather Forecasts (ECMWF) at 0.125° grids, indicating that the simulation results from the WW3 model are suitable for our study. In addition to winds retrieved from GF-3 SAR images in vertical-horizontal (VH) polarization, the characteristics of the typhoon wave on vertical-vertical (VV) polarization GF-3 SAR images are studied. It is found that SWH has a linear relationship with NRCS and cvar, however, SWH fluctuates with wind speed at all incidence angles. Based on the analyzed results, we simply tune two empirical wave retrieval algorithms for GF-3 SAR in typhoons. Although the correlation (COR) reaches 0.5 taking account into the NRCS term, a more accurate retrieval algorithm, including more related terms, is anticipated for further development for GF-3 SAR and validated through more typhoon images.

3.
Chem Commun (Camb) ; 52(49): 7683-6, 2016 Jun 08.
Article in English | MEDLINE | ID: mdl-27230421

ABSTRACT

Harvesting high-purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with removable dispersants remains a challenge. In this work, we demonstrate that small heteroacene derivatives may serve as promising selective dispersants for sorting s-SWCNTs. A rich N "doped" and thiophene-substituted hexaazapentacene molecule, denoted as 4HP, was found to be more favorable for high-purity s-SWCNTs with large diameters. Importantly, 4HP is photodegradable under 365 nm or blue light, which enables a simple deposition approach for the formation of clean s-SWCNT networks. The as-fabricated thin film transistors show excellent performance with a charge-mobility of 30-80 cm(2) V(-1) s(-1) and an on-off ratio of 10(4)-10(6).

4.
Chem Commun (Camb) ; 51(22): 4712-4, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25692965

ABSTRACT

High-purity semiconducting single-walled carbon nanotubes (s-SWCNTs) are urgently needed in the development of beyond-silicon nanoelectronics. The utility of conjugated polymers to assist in the sorting of s-SWCNTs has attracted immense attention due to the simplicity of the sorting process and the high selectivity of conjugated polymers for s-SWCNTs. Rather than developing new types of conjugated polymers, this work provides a versatile and facile route for the sorting of s-SWCNTs with improved purity which is far beyond the sensitivity of a spectrometer.

SELECTION OF CITATIONS
SEARCH DETAIL
...