Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; : 116325, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815629

ABSTRACT

The melanocortin-4 receptor (MC4R), a G protein-coupled receptor, is critically involved in regulating energy homeostasis as well as modulation of reproduction and sexual function. Two peptide antagonists (SHU9119 and MBP10) were derived from the endogenous agonist α-melanocyte stimulating hormone. But their pharmacology at human MC4R is not fully understood. Herein, we performed detailed pharmacological studies of SHU9119 and MBP10 on wild-type (WT) and six naturally occurring constitutively active MC4Rs. Both ligands had no or negligible agonist activity in Gαs-cAMP signaling on WT MC4R, but stimulated extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation on WT and mutant MC4Rs. Mechanistic studies revealed that SHU9119 and MBP10 stimulated ERK1/2 signaling of MC4R by different mechanisms, with SHU9119-stimulated ERK1/2 signaling mediated by phosphatidylinositol 3-kinase (PI3K) and MBP10-initiated ERK1/2 activation through PI3K and ß-arrestin. In summary, our studies demonstrated that SHU9119 and MBP10 were biased ligands for MC4R, preferentially activating ERK1/2 signaling through different mechanisms. SHU9119 acted as a biased ligand and MBP10 behaved as a biased allosteric modulator.

2.
Commun Biol ; 7(1): 480, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641731

ABSTRACT

Triglyceride (TAG) deposition in the liver is associated with metabolic disorders. In lower vertebrate, the propensity to accumulate hepatic TAG varies widely among fish species. Diacylglycerol acyltransferases (DGAT1 and DGAT2) are major enzymes for TAG synthesis. Here we show that large yellow croaker (Larimichthys crocea) has significantly higher hepatic TAG level than that in rainbow trout (Oncorhynchus mykiss) fed with same diet. Hepatic expression of DGATs genes in croaker is markedly higher compared with trout under physiological condition. Meanwhile, DGAT1 and DGAT2 in both croaker and trout are required for TAG synthesis and lipid droplet formation in vitro. Furthermore, oleic acid treatment increases DGAT1 expression in croaker hepatocytes rather than in trout and has no significant difference in DGAT2 expression in two fish species. Finally, effects of various transcription factors on croaker and trout DGAT1 promoter are studied. We find that DGAT1 is a target gene of the transcription factor CREBH in croaker rather than in trout. Overall, hepatic expression and transcriptional regulation of DGATs display significant species differences between croaker and trout with distinct hepatic triglyceride deposition, which bring new perspectives on the use of fish models for studying hepatic TAG deposition.


Subject(s)
Diacylglycerol O-Acyltransferase , Perciformes , Animals , Triglycerides/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Diglycerides/metabolism , Liver/metabolism , Hepatocytes/metabolism , Perciformes/genetics
3.
Biomolecules ; 13(8)2023 08 16.
Article in English | MEDLINE | ID: mdl-37627313

ABSTRACT

The melanocortin-4 receptor (MC4R) is essential for the modulation of energy balance and reproduction in both fish and mammals. Rainbow trout (Oncorhynchus mykiss) has been extensively studied in various fields and provides a unique opportunity to investigate divergent physiological roles of paralogues. Herein we identified four trout mc4r (mc4ra1, mc4ra2, mc4rb1, and mc4rb2) genes. Four trout Mc4rs (omMc4rs) were homologous to those of teleost and mammalian MC4Rs. Multiple sequence alignments, a phylogenetic tree, chromosomal synteny analyses, and pharmacological studies showed that trout mc4r genes may have undergone different evolutionary processes. All four trout Mc4rs bound to two peptide agonists and elevated intracellular cAMP levels dose-dependently. High basal cAMP levels were observed at two omMc4rs, which were decreased by Agouti-related peptide. Only omMc4rb2 was constitutively active in the ERK1/2 signaling pathway. Ipsen 5i, ML00253764, and MCL0020 were biased allosteric modulators of omMc4rb1 with selective activation upon ERK1/2 signaling. ML00253764 behaved as an allosteric agonist in Gs-cAMP signaling of omMc4rb2. This study will lay the foundation for future physiological studies of various mc4r paralogs and reveal the evolution of MC4R in vertebrates.


Subject(s)
Oncorhynchus mykiss , Animals , Receptor, Melanocortin, Type 4/genetics , Phylogeny , Signal Transduction , MAP Kinase Signaling System , Mammals
4.
Br J Nutr ; 129(10): 1657-1666, 2023 05 28.
Article in English | MEDLINE | ID: mdl-34556193

ABSTRACT

Angiopoietin-like 4 (ANGPTL4) is a potent regulator of TAG metabolism, but knowledge of the mechanisms underlying ANGPTL4 transcription in response to fatty acids is still limited in teleost. In the current study, we explored the molecular characterisation of ANGPTL4 and regulatory mechanisms of ANGPTL4 in response to fatty acids in large yellow croaker (Larimichthys crocea). Here, croaker angptl4 contained a 1416 bp open reading frame encoding a protein of 471 amino acids with highly conserved 12-amino acid consensus motif. Angptl4 was widely expressed in croaker, with the highest expression in the liver. In vitro, oleic and palmitic acids (OA and PA) treatments strongly increased angptl4 mRNA expression in croaker hepatocytes. Moreover, angptl4 expression was positively regulated by PPAR family (PPAR-α, ß and γ), and expression of PPARγ was also significantly increased in response to OA and PA. Moreover, inhibition of PPARγ abrogated OA- or PA-induced angptl4 mRNA expression. Beyond that, PA might increase angptl4 expression partly via the insulin signalling. Overall, the expression of ANGPTL4 is strongly upregulated by OA and PA via PPARγ in the liver of croaker, which contributes to improve the understanding of the regulatory mechanisms of ANGPTL4 in fish.


Subject(s)
Palmitic Acids , Perciformes , Animals , Palmitic Acids/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Amino Acid Sequence , Fatty Acids/metabolism , Liver/metabolism , Perciformes/genetics , Perciformes/metabolism , RNA, Messenger/metabolism , Angiopoietins/genetics , Angiopoietins/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism
5.
Biomolecules ; 12(11)2022 11 01.
Article in English | MEDLINE | ID: mdl-36358958

ABSTRACT

The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), have crucial roles in regulating energy homeostasis. The melanocortin-2 receptor accessory proteins (MRAPs, MRAP1 and MRAP2) have been shown to regulate neural MCRs in a species-specific manner. The potential effects of MRAP1 and MRAP2 on canine neural MCRs have not been investigated before. Herein, we cloned canine (c) MC3R and identified one canine MRAP2 splice variant, MRAP2b, with N-terminal extension of cMRAP2a. Canine MC3R showed higher maximal responses to five agonists than those of human MC3R. We further investigated the modulation of cMRAP1, cMRAP2a, and cMRAP2b, on cMC3R and cMC4R pharmacology. For the cMC3R, all MRAPs had no effect on trafficking; cMRAP1 significantly decreased Bmax whereas cMRAP2a and cMRAP2b significantly increased Bmax. Both MRAP1 and MRAP2a decreased Rmaxs in response to α-MSH and ACTH; MRAP2b only decreased α-MSH-stimulated cAMP generation. For the MC4R, MRAP1 and MRAP2a increased cell surface expression, and MRAP1 and MRAP2a increased Bmaxs. All MRAPs had increased affinities to α-MSH and ACTH. MRAP2a increased ACTH-induced cAMP levels, whereas MRAP2b decreased α-MSH- and ACTH-stimulated cAMP production. These findings may lead to a better understanding of the regulation of neural MCRs by MRAP1 and MRAP2s.


Subject(s)
Melanocortins , Receptor, Melanocortin, Type 2 , Dogs , Animals , Humans , Melanocortins/metabolism , Receptor, Melanocortin, Type 2/metabolism , alpha-MSH/metabolism , alpha-MSH/pharmacology , Adrenocorticotropic Hormone/pharmacology , Adrenocorticotropic Hormone/metabolism , Receptors, Melanocortin/metabolism , Carrier Proteins/metabolism
6.
Prog Mol Biol Transl Sci ; 189(1): 155-178, 2022.
Article in English | MEDLINE | ID: mdl-35595348

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of cell membrane receptors involved in modulating almost all physiological processes by transducing extracellular signals into the cytoplasm. Dysfunctions of GPCR-regulated signaling result in diverse human diseases, making GPCRs the most popular drug targets for human medicine. Large animals share higher similarities (in physiology and metabolism) with humans than rodents. Similar to findings in human genetics, diverse diseases caused by mutations in GPCR genes have also been discovered in large animals. Rhodopsin, endothelin B receptor, and CC chemokine receptor type 5 have been shown to be involved in human retinitis pigmentosa, Hirschsprung disease, and HIV infection/AIDS, respectively, and several mutations of these GPCRs have also been identified from large animals. The large animals with naturally occurring mutations of these GPCRs provide an opportunity to gain a better understanding of the pathogenesis of human diseases, and can be used for preclinical trials of therapies for human diseases. In this review, we aim to summarize the naturally occurring mutations of these three GPCRs in large animals and humans.


Subject(s)
Receptor, Endothelin B , Receptors, CCR5 , Rhodopsin , Animals , HIV Infections/genetics , Humans , Mutation/genetics , Receptor, Endothelin B/genetics , Receptors, CCR5/genetics , Receptors, G-Protein-Coupled/metabolism , Rhodopsin/genetics
7.
Prog Mol Biol Transl Sci ; 189(1): 179-213, 2022.
Article in English | MEDLINE | ID: mdl-35595349

ABSTRACT

The melanocortin-1 receptor (MC1R) is a G protein-coupled receptor expressed in cutaneous and hair follicle melanocytes, and plays a central role in coat color determination in vertebrates. Numerous MC1R variants have been identified in diverse species. Some of these variants have been associated with specific hair and skin color phenotypes in humans as well as coat color in animals. Gain-of-function mutations of the MC1R gene cause dominant or partially dominant black/dark coat color, and loss-of-function mutations of the MC1R gene cause recessive or partially recessive red/yellow/pale coat color phenotypes. These have been well documented in a large number of mammals, including human, dog, cattle, horse, sheep, pig, and fox. Higher similarities between large mammals and humans makes them better models to understand pathogenesis of human diseases caused by MC1R mutations. High identities in MC1Rs and similar variants identified in both humans and large mammals also provide an opportunity for receptor structure and function study. In this review, we aim to summarize the naturally occurring mutations of MC1R in humans and large animals.


Subject(s)
Pigmentation , Receptor, Melanocortin, Type 1 , Animals , Cattle/genetics , Dogs/genetics , Foxes/genetics , Horses/genetics , Mammals/genetics , Mutation/genetics , Phenotype , Pigmentation/genetics , Receptor, Melanocortin, Type 1/genetics , Sheep/genetics , Swine/genetics
8.
J Med Chem ; 65(8): 5990-6000, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35404053

ABSTRACT

Melanocortin peptides containing a 3-(2-naphthyl)-d-alanine residue in position 7 (DNal(2')7), reported as melanocortin-3 receptor (MC3R) subtype-specific agonists in two separate publications, were found to lack significant MC3R agonist activity. The cell lines used at the University of Arizona for pharmacological characterization of these peptides, consisting of HEK293 cells stably transfected with human melanocortin receptor subtypes MC1R, MC3R, MC4R, or MC5R, were then obtained and characterized by quantitative polymerase chain reaction (PCR). While the MC1R cell line correctly expressed only hMCR1, the three other cell lines were mischaracterized with regard to receptor subtype expression. The demonstration that a 3-(2-naphthyl)-d-alanine residue in position 7, irrespective of the melanocortin peptide template, results primarily in the antagonism of MC3R and MC4R then allowed us to search the published literature for additional errors. The erroneously characterized DNal(2')7-containing peptides date back to 2003; thus, our analysis suggests that systematic mischaracterization of the pharmacological properties of melanocortin peptides occurred.


Subject(s)
Melanocortins , Receptors, Corticotropin , Alanine , HEK293 Cells , Humans , Ligands , Peptides/metabolism , Peptides/pharmacology , Receptor, Melanocortin, Type 3 , Receptors, Corticotropin/chemistry , Receptors, Corticotropin/metabolism , Structure-Activity Relationship
9.
Biomolecules ; 12(2)2022 02 02.
Article in English | MEDLINE | ID: mdl-35204745

ABSTRACT

The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), play essential non-redundant roles in the regulation of energy homeostasis. Interaction of neural MCRs and melanocortin-2 receptor accessory proteins (MRAPs, MRAP1 and MRAP2) is suggested to play pivotal roles in MC3R and MC4R signaling. In the present study, we identified two new human (h) MRAP2 splice variants, MRAP2b (465 bp open reading frame) and MRAP2c (381 bp open reading frame). Human MRAP2s are different in C-termini. We investigated the effects of five isoforms of MRAPs, hMRAP1a, hMRAP1b, hMRAP2a, hMRAP2b, and hMRAP2c, on MC3R and MC4R pharmacology. At the hMC3R, hMRAP1a and hMRAP2c increased and hMRAP1b decreased the cell surface expression. hMRAP1a increased affinity to ACTH. Four MRAPs (hMRAP1a, hMRAP1b, hMRAP2a, and hMRAP2c) decreased the maximal responses in response to α-MSH and ACTH. For hMC4R, hMRAP1a, hMRAP2a, and hMRAP2c increased the cell surface expression of hMC4R. Human MRAP1b significantly increased affinity to ACTH while MRAP2a decreased affinity to ACTH. Human MRAP1a increased ACTH potency. MRAPs also affected hMC4R basal activities, with hMRAP1s increasing and hMRAP2s decreasing the basal activities. In summary, the newly identified splicing variants, hMRAP2b and hMRAP2c, could regulate MC3R and MC4R pharmacology. The two MRAP1s and three MRAP2s had differential effects on MC3R and MC4R trafficking, binding, and signaling. These findings led to a better understanding of the regulation of neural MCRs by MRAP1s and MRAP2s.


Subject(s)
Melanocortins , Receptor, Melanocortin, Type 2 , Humans , Melanocortins/metabolism , Protein Isoforms/genetics , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 3/metabolism , Receptors, Melanocortin/metabolism
10.
Pharmacol Ther ; 234: 108044, 2022 06.
Article in English | MEDLINE | ID: mdl-34822948

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor , Humans , Mutation , Obesity/drug therapy , Receptors, G-Protein-Coupled/genetics
11.
Endocr Connect ; 10(11): 1489-1501, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34678761

ABSTRACT

Melanocortin-3 receptor (MC3R) is a regulator of energy homeostasis, and interaction of MC3R and melanocortin-2 receptor accessory protein 2 (MRAP2) plays a critical role in MC3R signaling of mammals. However, the physiological roles of MC3R in teleosts are not well understood. In this study, qRT-PCR was used to measure gene expression. Radioligand binding assay was used to study the binding properties of topmouth culter MC3R (caMC3R). Intracellular cAMP generation was determined by RIA, and caMC3R expression was quantified with flow cytometry. We showed that culter mc3r had higher expression in the CNS. All agonists could bind and stimulate caMC3R to increase dose dependently intracellular cAMP accumulation. Compared to human MC3R, culter MC3R showed higher constitutive activity, higher efficacies, and Rmax to alpha-melanocyte-stimulating hormone (α-MSH), des-α-MSH, and adrenocorticotrophic hormone. Both caMRAP2a and caMRAP2b markedly decreased caMC3R basal cAMP production. However, only caMRAP2a significantly decreased cell surface expression, Bmax, and Rmax of caMC3R. Expression analysis suggested that MRAP2a and MRAP2b might be more important in regulating MC3R/MC4R signaling during larval period, and reduced mc3r, mc4r, and pomc expression might be primarily involved in modulation of MC3R/MC4R in adults. These data indicated that the cloned caMC3R was a functional receptor. MRAP2a and MRAP2b had different effects on expression and signaling of caMC3R. In addition, expression analysis suggested that MRAP2s, receptors, and hormones might play different roles in regulating culter development and growth.

12.
Front Immunol ; 12: 649385, 2021.
Article in English | MEDLINE | ID: mdl-34276647

ABSTRACT

High levels of soybean oil (SO) in fish diets enriched with linoleic acid (LA, 18:2n-6) could induce strong inflammation. However, the molecular mechanism underlying LA-induced inflammation in the liver of large yellow croaker (Larimichthys crocea) has not been elucidated. Based on previous research, autophagy has been considered a new pathway to relieve inflammation. Therefore, the present study was performed to investigate the role of autophagy in regulating LA-induced inflammation in the liver of large yellow croaker in vivo and in vitro. The results of the present study showed that activation of autophagy in liver or hepatocytes could significantly reduce the gene expression of proinflammatory factors, such as tumor necrosis factor α (TNFα) and interleukin 1ß (IL1ß). The results of the present study also showed that inhibition of autophagy could upregulate the gene expression of proinflammatory factors and downregulate the gene expression of anti-inflammatory factors in vivo and in vitro. Furthermore, autophagy could alleviate LA-induced inflammatory cytokine gene expression in vivo and in vitro, while inhibition of autophagy obtained the opposite results. In conclusion, our study shows that autophagy could regulate inflammation and alleviate LA-induced inflammation in the liver of large yellow croaker in vivo and in vitro for the first time, which may offer considerable benefits to the aquaculture industry and human health.


Subject(s)
Autophagy , Fish Diseases/immunology , Hepatitis, Animal/immunology , Linoleic Acid/adverse effects , Perciformes/immunology , Animal Feed/adverse effects , Animals , Aquaculture , Cells, Cultured , Fish Diseases/chemically induced , Fish Diseases/pathology , Hepatitis, Animal/chemically induced , Hepatitis, Animal/pathology , Hepatocytes/immunology , Liver/immunology , Liver/pathology , Primary Cell Culture , Soybean Oil/adverse effects , Soybean Oil/chemistry
13.
Br J Nutr ; 126(3): 345-354, 2021 08 14.
Article in English | MEDLINE | ID: mdl-33076999

ABSTRACT

A 10-week feeding trial was conducted to investigate the effect of dietary curcumin (CC) on growth antioxidant responses, fatty acid composition, and expression of lipid metabolism-related genes of large yellow croaker fed a high-fat diet (HFD). Four diets (lipid level at 18 %) were formulated with different levels of curcumin (0, 0·02, 0·04 and 0·06 %). The best growth performance was found in the 0·04 % curcumin group, with the body and hepatic lipid levels lower than the control group (0 % CC). The content of TAG, total cholesterol and LDL-cholesterol was the least in the 0·06 % curcumin group. The lowest malondialdehyde and the highest superoxide dismutase, catalase and total antioxidant capacity were observed in the 0·04 % curcumin group. The 0·04 % curcumin group had higher expression of Δ6fad, elovl5 and elovl4 and showed higher hepatic n-6 and n-3 PUFA. Expression of ppara, cpt1, and aco was significantly increased, while expression of srebp1 and fas was dramatically decreased in curcumin groups compared with the control group. Overall, 0·04 % curcumin supplementation could mitigate the negative effects caused by HFD and promote growth via reducing hepatic lipid deposition, improving antioxidant activity and increasing PUFA of large yellow croaker. To conclude, abnormal hepatic lipid deposition was probably due to increased fatty acid oxidation and reduced de novo synthesis of fatty acids.


Subject(s)
Antioxidants , Curcumin , Diet, High-Fat/veterinary , Fatty Acids/chemistry , Lipid Metabolism , Perciformes , Animal Nutritional Physiological Phenomena , Animals , Antioxidants/metabolism , Cholesterol/metabolism , Curcumin/pharmacology , Liver/metabolism , Perciformes/genetics , Perciformes/growth & development
14.
Article in English | MEDLINE | ID: mdl-32922362

ABSTRACT

Melanocortin-4 receptor (MC4R) plays important roles in regulation of multiple physiological processes, and interaction of MC4R and melanocortin receptor accessory protein 2 (MRAP2) is suggested to play pivotal role in energy balance of vertebrates. Topmouth culter (Culter alburnus) is an economically important freshwater fish in China. Herein we cloned culter mc4r, mrap2a, and mrap2b. Culter mc4r consisted of a 981 bp open reading frame encoding a protein of 326 amino acids. qRT-PCR revealed that mc4r, mrap2a, and mrap2b were primarily expressed in the central nervous system. In the periphery, mc4r and mrap2b were expressed more widely in the male, while mrap2a was expressed more widely in the female. Culter MC4R could bind to four peptide agonists and increase intracellular cAMP production dose dependently. Culter MC4R was constitutively active in both cAMP and ERK1/2 pathways, which was differentially regulated by culter MRAP2a and MRAP2b. Culter MRAP2a significantly increased Bmax and decreased agonist-stimulated cAMP, while MRAP2b increased cell surface and total expression but did not affect Bmax and agonist-stimulated cAMP. These results will aid the investigation of the potential physiological processes that MC4R might be involved in topmouth culter.


Subject(s)
Adaptor Proteins, Signal Transducing/pharmacology , Cyclic AMP/metabolism , Fish Proteins/metabolism , Gene Expression Regulation , Receptor, Melanocortin, Type 4/metabolism , Animals , Cyprinidae , Fish Proteins/genetics , Protein Isoforms , Receptor, Melanocortin, Type 4/genetics
15.
Article in English | MEDLINE | ID: mdl-32289502

ABSTRACT

Adiponectin (APN), an adipose tissue-derived hormone, plays a key role in regulating energy metabolism in mammals. However, its physiological roles in teleosts remain poorly understood. In the present study, the apn gene was cloned from large yellow croaker, which was mainly expressed in the adipose, muscle and liver. Further studies showed that adaptor protein phosphotyrosine interaction PH domain and leucine zipper 1 (APPL1) was localized in the cytoplasm near the cell membrane and was directly bounded to adiponectin receptors (AdipoRs). Meanwhile, APN played a crucial role in lipid metabolism of primary muscle cells by promoting the synthesis, oxidation and transport of fatty acids, and the promoting effects were blocked by knockdown of appl1 and AdipoRs. Furthermore, the activation/inhibition of peroxisome proliferators activated receptor γ (PPARγ) enhanced/suppressed the APN-mediated lipid metabolism. Overall, results showed that APN mediated lipid metabolism through AdipoRs-APPL1 activated PPARγ and further regulated the synthesis, oxidation and transport of FA. This study will facilitate the investigation of APN functions in lipid metabolism and energy homeostasis and reveal the evolution of lipids utilization and energy homeostasis in vertebrates.


Subject(s)
Adiponectin/metabolism , Lipid Metabolism , Perciformes/metabolism , Animals , Receptors, Adiponectin/metabolism
16.
Fish Shellfish Immunol ; 87: 600-608, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30738147

ABSTRACT

A 70-day feeding trial was conducted to investigate the effects of dietary fish oil (FO) replaced by palm oil (PO) on growth, biochemical and antioxidant response as well as inflammatory response in the liver of large yellow croaker (initial weight 15.87 ±â€¯0.14 g). Four iso-proteic and iso-lipidic experimental diets were formulated with 0% (the control group), 33.3%, 66.7% and 100% FO replaced by PO. Fish fed the diet with 100% PO showed significantly lower growth performance than the control group. As expected, the contents of C16:0, C18:1n-9 and C18:2n-6 were increased with increasing dietary PO levels. There were remarkable increases in total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) levels in fish fed the diet with 100% PO compared to the control group. Moreover, dietary PO significantly increased activities of plasma alanine transaminase (ALT) and aspartate aminotransferase (AST) in fish fed the diet with 100% PO compared to the control group. The total antioxidant capacity (T-AOC) and the activity of catalase (CAT) in plasma were significantly decreased in fish fed the diet with 100% PO compared to the control group, and meanwhile no significant differences were found in T-AOC and CAT activity in fish fed diets with no more than 66.7% PO. Fish fed the diet with 100% PO exerted significantly higher toll like receptors (TLRs) and myeloid differentiation factor (MyD88) mRNA expression levels than the control group. The IFNγ, IL-1ß and TNFα mRNA expressions were increased with increasing dietary PO levels. The increase of pro-inflammatory gene expression may be due to the activation of NF-κB signaling as the ratio of nucleus p65 to total p65 protein was elevated with the increase of dietary PO levels. These results showed that relatively higher PO levels in diets suppressed the growth and antioxidant capacity as well as induced the inflammatory response by activating TLR-NF-κB signaling pathway in juvenile large yellow croaker.


Subject(s)
Dietary Fats, Unsaturated/metabolism , Fish Diseases/immunology , Inflammation/veterinary , Palm Oil/metabolism , Perciformes/physiology , Signal Transduction/drug effects , Animal Feed/analysis , Animals , Antioxidants/metabolism , Diet/veterinary , Dietary Fats, Unsaturated/administration & dosage , Fish Diseases/chemically induced , Fish Proteins/genetics , Fish Proteins/metabolism , Inflammation/chemically induced , Inflammation/immunology , NF-kappa B/genetics , NF-kappa B/metabolism , Palm Oil/administration & dosage , Perciformes/genetics , Perciformes/growth & development , Perciformes/immunology , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
17.
J Agric Food Chem ; 66(34): 9097-9106, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30095902

ABSTRACT

Serum lipid metabolic responses are associated with certain metabolic disorders induced by dietary habits in mammals. However, such associations have not been reported in fish. Lipidomic analyses were performed to investigate fish lipid metabolic responses to a dietary vegetable oil (VO) blend and to elucidate the mechanism of how the dietary VO blend affects serum lipid profiles. Results showed that the dietary VO blend strongly affects serum lipid profiles, especially the ratio of triglyceride/phosphatidylcholine (TAG/PC), via inhibiting hepatic PC biosynthesis and facilitating hepatic and intestinal lipoprotein assembly. Studies in vitro suggested that changes of serum TAG/PC ratio may be partially attributed to altered fatty acid composition in diets. Additionally, the reduction of 16:0/18:1-PC induced by the dietary VO blend may play a role in abnormal lipid deposition through inhibiting PPARA-mediated activation of ß-oxidation. These findings suggested that the serum TAG/PC ratio might be a predictive parameter for abnormal lipid metabolism induced by dietary nutrition in fish.


Subject(s)
Animal Feed/analysis , Lipids/blood , Liver/metabolism , Perciformes/metabolism , Plant Oils/metabolism , Animal Feed/adverse effects , Animals , Fatty Acids/metabolism , Lipid Metabolism , Perciformes/blood , Phosphatidylcholines/blood , Plant Oils/adverse effects , Triglycerides/blood
18.
Article in English | MEDLINE | ID: mdl-28982586

ABSTRACT

In the present study, farnesoid X receptor (FXR) was cloned and characterized from liver of large yellow croaker (L crocea) and the effects of dietary chenodeoxycholic acid (CDCA), a nature ligand of FXR, on the inflammatory genes expression in the intestine and spleen of large yellow croaker were investigated. Multiple alignments showed that FXR of large yellow croaker contained highly conserved DNA-binding domain and ligand binding domain compared with other species. The subcellular localization analysis showed that FXR-GFP fusion protein could target to the nucleus in HEK 293t. The tissue specific results demonstrated that FXR was highly expressed in liver, intestine and kidney of large yellow croaker. In addition, dietary soybean oil decreased the expression of FXR and IL-10 and significantly increased the expression of the pro-inflammatory genes in the intestine or spleen, such as TNFα, COX-2, IL-1ß, IL-6, while the supplementation of CDCA could partly reverse these effects. These results suggested that the supplementation of CDCA may relieve the inflammation of intestine and spleen in large yellow croaker via the activation of FXR.


Subject(s)
Chenodeoxycholic Acid/pharmacology , Fish Proteins , Gene Expression Regulation/drug effects , Intestinal Mucosa/metabolism , Perciformes , Receptors, Cytoplasmic and Nuclear , Spleen/metabolism , Animals , Cloning, Molecular , Fish Proteins/biosynthesis , Fish Proteins/genetics , Inflammation/genetics , Inflammation/metabolism , Organ Specificity/drug effects , Perciformes/genetics , Perciformes/metabolism , Receptors, Cytoplasmic and Nuclear/biosynthesis , Receptors, Cytoplasmic and Nuclear/genetics
19.
Fish Shellfish Immunol ; 71: 76-82, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28964862

ABSTRACT

Hepatic steatosis induced inflammation is becoming increasingly prevalent in farmed fish. This study was conducted to investigate the protective effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) against hepatic steatosis-induced inflammation and its potential molecular mechanisms in hepatocyte of large yellow croaker (Larmichthys crocea). We found that the hepatic steatosis-induced inflammation was relieved by ω-3 PUFAs, meanwhile, the Sirt1 activity and transcript expression was increased by ω-3 PUFAs. The increased Sirt1 activity can decrease the hepatic steatosis-induced inflammation. The protective effects of ω-3 PUFAs against hepatic steatosis-induced inflammation was reversed by the treatment with Sirt1 inhibitor EX-527. The nuclear translocation of nuclear transcription factor kappa-B (NF-κB) p65 was significantly decreased after ω-3 PUFAs treatments compared to the palmitic acid stimulation group. The ω-3 PUFAs induced cytoplasm translocation of NF-κB p65 was reversed by EX-527. Together, ω-3 PUFAs alleviate hepatic steatosis-induced inflammation through Sirt1-mediated nuclear translocation of NF-κB p65 subunit in hepatocytes of large yellow croaker. The present study provides important insight into the mechanisms of the protective effects of ω-3 PUFAs, providing theory bases for alleviating the hepatic steatosis induced inflammation of farmed fish, thereby offering great benefits to the aquaculture industry and fish consumers.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Fatty Acids, Omega-3/pharmacology , Fatty Liver/veterinary , Fish Diseases/immunology , Fish Proteins/genetics , Inflammation/veterinary , Perciformes , Transcription Factor RelA/metabolism , Animals , Fatty Liver/etiology , Fish Diseases/genetics , Fish Proteins/metabolism , Hepatocytes , Inflammation/genetics , Inflammation/immunology , Protein Transport , Sirtuin 1/genetics , Sirtuin 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...