Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38628061

ABSTRACT

This study investigated the protective effects of chlorogenic acid (CGA) on production performance and liver function of rabbits under heat stress (HS) condition. A total of 120 healthy New Zealand weaned rabbits with similar initial body weight, were randomly divided into 3 treatments with 20 replicates per treatment and 2 weaned rabbits per replicate: control (CON) group (rabbits were housed at 25 ± 1°C and fed a basal diet), HS group (rabbits were housed at 35 ± 1°C and fed a basal diet), and HS + CGA group (rabbits were housed at 35 ± 1°C and fed a basal diet supplemented with 800 mg/kg CGA). The trial lasted for 28 days. The results showed that HS challenge decreased (p < 0.05) growth performance, induced oxidative stress and hepatic apoptosis, and caused liver damage in rabbits. However, dietary CGA supplementation increased (p < 0.05) body weight gain and feed efficiency, and enhanced (p < 0.05) antioxidative capacity in serum and liver in HS-challenged rabbits; attenuated HS-induced increases in urea nitrogen (p = 0.03), alanine aminotransferase (p = 0.03), aspartate aminotransferase (p = 0.01), caspase-8 (p = 0.02), and caspase-3 (p = 0.04) as well as decrease albumin (p = 0.04). Moreover, supplementation with CGA upregulated Nrf2/HO-1 pathway-related genes expressions, including Nrf2 (p = 0.009), HO-1 (p = 0.03) and SOD1 (p = 0.04) in HS-challenged rabbits. Our findings demonstrated that dietary CGA supplementation could alleviate HS-induced decline in growth performance, and protect against HS-induced liver damage partially through enhancing antioxidant capacity via acting Nrf2/HO-1 pathway and inhibiting hepatic apoptosis in rabbits.

2.
Front Microbiol ; 13: 1027101, 2022.
Article in English | MEDLINE | ID: mdl-36419414

ABSTRACT

This study was conducted to investigate the impacts of chlorogenic acid (CGA) on growth performance, intestinal permeability, intestinal digestion and absorption-related enzyme activities, immune responses, antioxidant capacity and cecum microbial composition in weaned rabbits. One hundred and sixty weaned rabbits were allotted to four treatment groups and fed with a basal diet or a basal diet supplemented with 400, 800, or 1,600 mg/kg CGA, respectively. After a 35-d trial, rabbits on the 800 mg/kg CGA-supplemented group had higher (p < 0.05) ADG and lower (p < 0.05) F/G than those in control (CON) group. According to the result of growth performance, eight rabbits per group were randomly selected from the CON group and 800 mg/kg CGA group to collect serum, intestinal tissue samples and cecum chyme samples. Results showed that compared with the CON group, supplementation with 800 mg/kg CGA decreased (p < 0.05) levels of D-lactate, diamine oxidase, IL-1ß, IL-6, and malondialdehyde (MDA), and increased IL-10 concentration in the serum; increased (p < 0.05) jejunal ratio of villus height to crypt depth, enhanced (p < 0.05) activities of maltase and sucrase, increased (p < 0.05) concentrations of IL-10, T-AOC, MHCII and transforming growth factor-α, and decreased (p < 0.05) levels of TNF-α and MDA in the jejunum of weaned rabbits. In addition, results of high-throughput sequencing showed that CGA supplementation elevated (p < 0.05) microbial diversity and richness, and increased (p < 0.05) the abundances of butyrate-producing bacteria (including genera V9D2013_group, Monoglobus, Papillibacter, UCG-005, and Ruminococcus). These results indicated that dietary supplementation with 800 mg/kg CGA could improve the growth performance of weaned rabbits by enhancing intestinal structural integrity, improving the intestinal epithelium functions, and modulating the composition and diversity of gut microbiota.

SELECTION OF CITATIONS
SEARCH DETAIL
...