Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Psychiatr Genet ; 29(4): 127-129, 2019 08.
Article in English | MEDLINE | ID: mdl-30933047

ABSTRACT

Dysregulation of the immune system in mental disease, particularly complement component 4 (C4), which may be associated with schizophrenia, has been repeatedly observed. This study investigated the association between the level of serum component 4 and schizophrenia. Data were derived from a case-control association study of 40 unrelated adult patients with schizophrenia and 40 matched healthy controls. The component 4 level in serum was measured for comparative analysis by a component 4 enzyme-linked immunosorbent assay kit. Our findings suggest that the serum component 4 level is lower in patients with schizophrenia than in the controls, and the results apply to both males and females. Our results will lay an important foundation for establishing diagnostic methods and provide feasible and reliable evidence for the clinical treatment of schizophrenia.


Subject(s)
Complement C4/metabolism , Schizophrenia/blood , Adult , Case-Control Studies , Female , Humans , Male
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(1): 23-6, 2014 Jan.
Article in Chinese | MEDLINE | ID: mdl-24783526

ABSTRACT

Y2O3:Tb3+ and Y2O3:Tb3+, Yb3+ samples were prepared by co-precipitation method. The morphology, microstructure and fluorescence spectra at room temperature of samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and fluorescence spectrometer, The optimal process conditions of Y2O3:Tb3+ under different doping concentrations, annealing temperature, and pH value of the solution were obtained: Tb3+ concentration is 1.5%, annealing temperature is 1400 degrees C, an alkaline solution environment, and samples under 300 nm light excitation have the largest green light emission at 543 nm. The corresponding relation of Tb3+ ion level structure and transition properties and experimental spectra were analyzed in detail, and we explained the influence mechanism of process conditions and the fluorescence quenching process mainly effects luminous intensity of samples. The energy transfer from sensitizing ions Tb3+ to active ion Yb3+ was confirmed, it made the sample have considerable emitting light in the near-infrared region; the authors described the process of cooperation conversion luminescence between the two ions from the level transition angle, and also analyzed the system of fluorescence quenching process. Test results showed that the near infrared quantum cutting can effectively improve the luminous efficiency of doped ions, and will have broad application prospects in the silicon solar cells and other fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...