Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2400261, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741451

ABSTRACT

Intracranial implants for diagnosis and treatment of brain diseases have been developed over the past few decades. However, the platform of conventional implantable devices still relies on invasive probes and bulky sensors in conjunction with large-area craniotomy and provides only limited biometric information. Here, an implantable multi-modal sensor array that can be injected through a small hole in the skull and inherently spread out for conformal contact with the cortical surface is reported. The injectable sensor array, composed of graphene multi-channel electrodes for neural recording and electrical stimulation and MoS2-based sensors for monitoring intracranial temperature and pressure, is designed based on a mesh structure whose elastic restoring force enables the contracted device to spread out. It is demonstrated that the sensor array injected into a rabbit's head can detect epileptic discharges on the surface of the cortex and mitigate it by electrical stimulation while monitoring both intracranial temperature and pressure. This method provides good potential for implanting a variety of functional devices via minimally invasive surgery.

2.
Chem Rev ; 124(2): 318-419, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38055207

ABSTRACT

Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.

3.
Adv Mater ; 36(2): e2309531, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37985162

ABSTRACT

The uniform deposition of perovskite light-emitting diodes (PeLEDs) and their integration with backplane thin-film transistors (TFTs) remain challenging for large-area display applications. Herein, an active-matrix PeLED display fabricated via the heterogeneous integration of cesium lead bromide LEDs and molybdenum disulfide (MoS2 )-based TFTs is presented. The single-source evaporation method enables the deposition of highly uniform perovskite thin films over large areas. PeLEDs are integrated with MoS2 TFTs to fabricate an active-matrix PeLED display with an 8 × 8 array, which exhibits excellent brightness control capability and high switching speed. This study demonstrates the potential of PeLEDs as candidates for next-generation displays and presents a novel approach for fabricating optoelectronic devices via the heterogeneous integration of 2D materials and perovskites, thereby paving the way toward the fabrication of practical future optoelectronic systems.

4.
ACS Appl Mater Interfaces ; 15(40): 47359-47367, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37756669

ABSTRACT

Advancements in the synthesis of large-area, high-quality two-dimensional transition metal dichalcogenides such as MoS2 play a crucial role in the development of future electronic and optoelectronic devices. The presence of defects formed by sulfur vacancies in MoS2 results in low photoluminescence emission and imparts high n-type doping behavior, thus substantially affecting material quality. Herein, we report a new method in which single-phase (liquid) precursors are used for the metal-organic chemical vapor deposition (MOCVD) growth of a MoS2 film. Furthermore, we fabricated a high-performance photodetector (PD) and achieved improved photoresponsivity and faster photoresponse in the spectral range 405-637 nm compared to those of PDs fabricated by the conventional MOCVD method. In addition, the fabricated MoS2 thin film showed a threshold voltage shift in the positive gate bias direction owing to the reduced number of S vacancy defects in the MoS2 lattice. Thus, our method significantly improved the synthesis of monolayer MoS2 and can expand the application scope of high-quality, atomically thin materials in large-scale electronic and optoelectronic devices.

5.
Nat Nanotechnol ; 18(12): 1439-1447, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37500777

ABSTRACT

Recent advances in two-dimensional semiconductors, particularly molybdenum disulfide (MoS2), have enabled the fabrication of flexible electronic devices with outstanding mechanical flexibility. Previous approaches typically involved the synthesis of MoS2 on a rigid substrate at a high temperature followed by the transfer to a flexible substrate onto which the device is fabricated. A recurring drawback with this methodology is the fact that flexible substrates have a lower melting temperature than the MoS2 growth process, and that the transfer process degrades the electronic properties of MoS2. Here we report a strategy for directly synthesizing high-quality and high-crystallinity MoS2 monolayers on polymers and ultrathin glass substrates (thickness ~30 µm) at ~150 °C using metal-organic chemical vapour deposition. By avoiding the transfer process, the MoS2 quality is preserved. On flexible field-effect transistors, we achieve a mobility of 9.1 cm2 V-1 s-1 and a positive threshold voltage of +5 V, which is essential for reducing device power consumption. Moreover, under bending conditions, our logic circuits exhibit stable operation while phototransistors can detect light over a wide range of wavelengths from 405 nm to 904 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...