Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 8(3): e0061422, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37017520

ABSTRACT

The chicken gut microbiota plays an influential role in nutrient absorption and metabolism. A clear picture of microbiota succession can enhance host nutrition and disease resistance. This study investigated the cecal microbiota succession of broilers between 3 and 42 days after hatching using 16S rRNA gene sequencing and analyzed its potential association with intestinal nutrient metabolism. Microbiota structure differed significantly at different time points depending on the microbiota alpha-diversity or beta-diversity. Proteobacteria and Bacteroidetes promoted succession on days 3 to 7 and days 28 to 35, respectively. Firmicutes and Tenericutes maintained homeostasis on days 7 to 28 and days 35 to 42. Shigella, [Ruminococcus], Erysipelotrichaceae_Clostridium, and Coprobacillus promoted succession on days 3 to 7; Faecalibacterium modified microbial composition on days 7 to 14; Faecalibacterium and Bacteroides regulated microbial structure from days 21 to 28. The microbiota structure was relatively stable on days 14 to 21 and days 28 to 35. Spearman's correlation analysis indicated a positive correlation between Lactobacillus and villus height and crypt depth (P < 0.01). Faecalibacterium and Shigella were correlated with propionate, butyrate, and valerate concentrations (P < 0.01). Ruminococcus was correlated with sodium-glucose cotransporters 1 and cationic amino acid transporter 1 expression (P < 0.05). Erysipelotrichaceae_Clostridium and Shigella were positively correlated with serum levels of total cholesterol, tryglucerides, and high- and low-density lipoprotein cholesterol (P < 0.01). Bacteroides, Parabacteroides, Lactobacillus, and Shigella were correlated with serum VB6 levels (P < 0.01). Bacteroides, Erysipelotrichaceae_Clostridium, and Coprobacillus were correlated with the moisture content of cecal contents (P < 0.05). The identification of the microbiota in correlation with nutrient metabolism will promote microbial nutrition through microbiota intervention or nutritional regulation. IMPORTANCE The poultry industry has become a global leader in livestock farming over the past few decades. Poultry production has a large consumer market as an integrated industry producing high-protein foods. Establishing the association between microbiota and nutrient metabolism processes provides fresh insights for precise nutrient regulation. This study aimed to describe the development of cecal microbiota in broiler chickens throughout the production cycle and to assess the correlation of nutrient metabolism phenotypes with temporal changes in the microbiota. The results suggested that changes in cecal microbes with age partly explain changes in gut nutrient metabolic processes, and numerous microbes were significantly associated with the processes. Therefore, this study attempts to further find efficient ways of improving poultry production. One is to promote nutrient metabolism by identifying potential candidates for probiotics, and another is to foster the dominant colonization of the microbiota by regulating nutrient metabolism.


Subject(s)
Cecum , Chickens , Animals , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Cecum/microbiology , Nutrients , Cholesterol
2.
Animals (Basel) ; 9(10)2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31569385

ABSTRACT

This study aimed to determine the effects of different dietary threonine levels on the antioxidant and immune capacity and the immunity of broilers. A total of 432 one-day-old Arbor Acres (AA) broilers were randomly assigned to 4 groups, each with 6 replicates of 18 broilers. The amount of dietary threonine in the four treatments reached 85%, 100%, 125%, and 150% of the NRC (Nutrient Requirements of Poultry, 1994) recommendation for broilers (marked as THR85, THR100, THR125, and THR150). After 42 days of feeding, the cecum contents and jejunum mucosa were collected for metabolic analysis and transcriptional sequencing. The results indicated that under the condition of regular and non-disease growth of broilers, compared with that of the THR85 and THR150 groups, the metabolic profile of the THR125 group was significantly higher than that of the standard requirement group. Compared with the THR100 group, the THR125 group improved antioxidant ability and immunity of broilers and enhanced the ability of resisting viruses. The antioxidant gene CAT was upregulated. PLCD1, which is involved in immune signal transduction and plays a role in cancer suppression, was also upregulated. Carcinogenic or indirect genes PKM2, ACY1, HK2, and TBXA2 were down-regulated. The genes GPT2, glude2, and G6PC, which played an important role in maintaining homeostasis, were up-regulated. Therefore, the present study suggests that 125% of the NRC recommendations for Thr level had better effects on antioxidant and immune capacity, as well as maintaining the homeostasis of the body.

3.
J Anim Physiol Anim Nutr (Berl) ; 103(6): 1792-1799, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31435969

ABSTRACT

The aim of this study was to investigate the effects of deficient or excess of dietary threonine (Thr) levels on intestinal integrity and barrier function of broilers. A total of 432 1-day-old commercial broilers (Arbor Acre) were assigned to four experiment groups consisting of six replicates of 18 birds. The treatments were designed as follows: 85%, 100%, 125% and 150% of NRC (Nutrient requirements of poultry (9th edn). Washington, DC: The National Academies Press, 1994) recommendations. The results indicated that expressions of jejunal and ileal secretory immunoglobulin A (sIgA) mRNA were increased linearly or quadratically by increasing Thr (p < .05), and the highest sIgA mRNA abundance was obtained in 125% Thr level. Likewise, the intestinal sIgA content showed similar increasing trend with the intestinal sIgA gene expression in this instance. The high level of Thr inclusion upregulated mucin 2 (MUC2) mRNA expression in the jejunum and ileum (p < .05). In addition, on day 21, the expression levels of jejunal zonula occludens-2 (ZO-2) and ileal zonula occludens-1 (ZO-1) decreased then increased with increasing Thr level (p < .05), whereas, the mRNA expressions of occludin in the jejunum and ileum had no significant difference amongst groups (p >.05). On day 42, Thr treatments did not affect the mRNA abundance of measured genes in the jejunum and ileum (p > .05). These findings suggested that Thr might be a nutrient immunomodulator that affects intestinal barrier function, moreover, 125% of the NRC (1994) recommendations Thr level was optimum.


Subject(s)
Animal Feed/analysis , Chickens , Diet/veterinary , Intestinal Mucosa/drug effects , Threonine/administration & dosage , Animal Nutritional Physiological Phenomena , Animals , Gene Expression Regulation/drug effects , Immunoglobulin A, Secretory , Mucin-2/genetics , Mucin-2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Threonine/pharmacology
4.
Pharmazie ; 70(9): 593-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26492644

ABSTRACT

Breviscapine (BE) is a standardized Chinese herbal medicine extracted from Erigeron breviscapus (Vant.) Hand.-Mazz. It has been widely used to treat cardiovascular and cerebrovascular diseases. However, there are no reports on the protective effects and underlying molecular mechanisms of BE action on myocardial ischemia/reperfusion (MI/R)-induced cardiomyocyte apoptosis. In the present study, we aimed to confirm the cardioprotective effect of BE from MI/R injury in vivo, and investigate the potential molecular mechanisms against simulated ischemia/reperfusion (SI/R)-induced cardiomyocyte apoptosis in vitro. The rat model of MI/R injury was induced by 30 min of transient vessel occlusion followed by 3 h of reperfusion. BE significantly reduced the myocardium infarct size and production of cardiac troponin (cTnl) in serum. In an in vitro experiment, H9c2 cardiomyocytes were incubated with vehicle or ischemic buffer during hypoxia; then, they were reoxygenated with or without BE. BE markedly improved the cell viability and decreased lactate dehydrogenase (LDH) release. We confirmed the anti-apoptotic effect of BE with the Hoechst 33258 staining assay, and this effect was associated with an increase in Bcl-2 and a decrease in active caspase-3 expression. Western blot analysis also showed that BE increased the phosphorylation of Akt and eNOS in H9c2 cells, and the protective effects of BE were partially inhibited by the phosphatidylinositol 3'-kinase (PI3K) specific inhibitor LY294002. Our results suggested that BE could provide significant cardioprotection against MI/R injury, and the potential mechanisms might involve suppression of cardiomyocyte apoptosis through activating the PI3K/Akt/eNOS signaling pathway.


Subject(s)
Apoptosis/drug effects , Cardiotonic Agents/pharmacology , Flavonoids/pharmacology , Myocardial Ischemia/pathology , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Animals , Caspase 3/metabolism , Cell Line , L-Lactate Dehydrogenase/metabolism , Male , Myocardial Infarction/pathology , Myocytes, Cardiac/pathology , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Troponin I/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...