Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Virology ; 597: 110142, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959723

ABSTRACT

OBJECTIVES: The specific humoral immune response resulting from inactivated vaccination following by BA.5 infection, and predictors of XBB variants re-infection in BA.5 infection-recovered nasopharyngeal carcinoma (BA.5-RNPC) patients, were explored. METHODS: Serum SARS-CoV-2 specific antibody levels were assessed using enzyme-linked-immunosorbent-assay. Univariate and multivariate binary logistic regression analyses were conducted to identify factors associated with the magnitude of specific humoral immunity and susceptibility to re-infection by XBB variants. RESULTS: Our data demonstrates that SARS-CoV-2 specific antibody levels were comparable between BA.5-RNPC patients and BA.5 infection-recovered-non-cancerous (BA.5-RNC) individuals. Specifically, serum levels of anti-ancestral-S1-IgG, anti-ancestral-nucleocapsid-protein (NP)-IgG, anti-BA.5-receptor binding domain (RBD)-IgG and anti-XBB.1.1.6-RBD-IgG were higher in BA.5-RNPC patients compared to those without a prior infection. Compared to BA.5-RNPC patients without vaccination, individuals who received inactivated vaccination exhibited significantly higher levels of anti-ancestral-S1-IgG and anti-XBB.1.16-RBD-IgG. Multivariate logistic regression analysis revealed that inactivated vaccination was the most significant predictor of all tested SARS-CoV-2 specific antibodies response. Subsequent analysis indicated that a low globulin level is an independent risk factor for XBB re-infection in BA.5-RNPC patients. CONCLUSIONS: The SARS-CoV-2 specific antibodies have been improved in vaccinated BA.5-RNPC patients. However, the baseline immunity status biomarker IgG is an indicators of XBB variant re-infection risk in BA.5-RNPC patients.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Reinfection , SARS-CoV-2 , Humans , Male , Female , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Middle Aged , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Carcinoma/genetics , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Risk Factors , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/virology , Reinfection/immunology , Reinfection/virology , Adult , Immunoglobulin G/blood , Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunity, Humoral , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage
2.
ACS Nano ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028863

ABSTRACT

Förster resonance energy transfer (FRET)-based homogeneous immunoassay obviates tedious washing steps and thus is a promising approach for immunoassays. However, a conventional FRET-based homogeneous immunoassay operating in the visible region is not able to overcome the interference of complex biological samples, thus resulting in insufficient detection sensitivity and poor accuracy. Here, we develop a near-infrared (NIR)-to-NIR FRET platform (Ex = 808 nm, Em = 980 nm) that enables background-free high-throughput homogeneous quantification of various biomarkers in complex biological samples. This NIR-to-NIR FRET platform is portable and easy to operate and is mainly composed of a high-performance NIR-to-NIR FRET pair based on lanthanide-doped nanoparticles (LnNPs) and a custom-made microplate reader for readout of NIR luminescence signals. We demonstrate that this NIR-to-NIR FRET platform is versatile and robust, capable of realizing highly sensitive and accurate detection of various critical biomarkers, including small molecules (morphine and 1,25-dihydroxyvitamin D), proteins (human chorionic gonadotropin), and viral particles (adenovirus) in unprocessed complex biological samples (urine, whole blood, and feces) within 5-10 min. We expect this NIR-to-NIR FRET platform to provide low-cost healthcare for populations living in resource-limited areas and be widely used in many other fields, such as food safety and environmental monitoring.

3.
ACS Omega ; 9(11): 13183-13190, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38524484

ABSTRACT

Nitrogen-doped carbon dots (NCD) with high fluorescence retention and good stability were successfully fabricated using citric acid and urea via a facile and eco-friendly one-step microwave method, which exhibited superior specificity for detection of nitrofurantoin (NFT). Upon the addition of NFT, the fluorescence intensity of NCD at 450 nm was significantly decreased. Besides, a satisfactory linear relationship between the fluorescence quenching efficiency and concentrations of NFT was obtained. Especially, NCD was qualitatively and quantitatively applied for detection NFT in milk and meat extract samples with a high recovery rate. Consequently, it was suggested that the detection method had potential application in the specific detection of NFT, offering a novel approach for veterinary drug residue detection.

4.
Mol Cell Proteomics ; 23(3): 100729, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309569

ABSTRACT

Diagnosing, predicting disease outcome, and identifying effective treatment targets for virus-related cancers are lacking. Protein biomarkers have the potential to bridge the gap between prevention and treatment for these types of cancers. While it has been shown that certain antibodies against EBV proteins could be used to detect nasopharyngeal carcinoma (NPC), antibodies targeting are solely a tiny part of the about 80 proteins expressed by the EBV genome. Furthermore, it remains unclear what role other viruses play in NPC since many diseases are the result of multiple viral infections. For the first time, this study measured both IgA and IgG antibody responses against 646 viral proteins from 23 viruses in patients with NPC and control subjects using nucleic acid programmable protein arrays. Candidate seromarkers were then validated by ELISA using 1665 serum samples from three clinical cohorts. We demonstrated that the levels of five candidate seromarkers (EBV-BLLF3-IgA, EBV-BLRF2-IgA, EBV-BLRF2-IgG, EBV-BDLF1-IgA, EBV-BDLF1-IgG) in NPC patients were significantly elevated than controls. Additional examination revealed that NPC could be successfully diagnosed by combining the clinical biomarker EBNA1-IgA with the five anti-EBV antibodies. The sensitivity of the six-antibody signature at 95% specificity to diagnose NPC was comparable to the current clinically-approved biomarker combination, VCA-IgA, and EBNA1-IgA. However, the recombinant antigens of the five antibodies are easier to produce and standardize compared to the native viral VCA proteins. This suggests the potential replacement of the traditional VCA-IgA assay with the 5-antibodies combination to screen and diagnose NPC. Additionally, we investigated the prognostic significance of these seromarkers titers in NPC. We showed that NPC patients with elevated BLLF3-IgA and BDLF1-IgA titers in their serum exhibited significantly poorer disease-free survival, suggesting the potential of these two seromarkers as prognostic indicators of NPC. These findings will help develop serological tests to detect and treat NPC in the future.


Subject(s)
Nasopharyngeal Neoplasms , Proteome , Humans , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Neoplasms/diagnosis , Herpesvirus 4, Human/genetics , Capsid Proteins , Antigens, Viral , Biomarkers , Immunoglobulin G , Immunoglobulin A
5.
Biosensors (Basel) ; 14(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38392022

ABSTRACT

Respiratory pathogens pose a huge threat to public health, especially the highly mutant RNA viruses. Therefore, reliable, on-site, rapid diagnosis of such pathogens is an urgent need. Traditional assays such as nucleic acid amplification tests (NAATs) have good sensitivity and specificity, but these assays require complex sample pre-treatment and a long test time. Herein, we present an on-site biosensor for rapid and multiplex detection of RNA pathogens. Samples with viruses are first lysed in a lysis buffer containing carrier RNA to release the target RNAs. Then, the lysate is used for amplification by one-step reverse transcription and single-direction isothermal strand displacement amplification (SDA). The yield single-strand DNAs (ssDNAs) are visually detected by a lateral flow biosensor. With a secondary signal amplification system, as low as 20 copies/µL of virus can be detected in this study. This assay avoids the process of nucleic acid purification, making it equipment-independent and easier to operate, so it is more suitable for on-site molecular diagnostic applications.


Subject(s)
Biosensing Techniques , Viruses , Reverse Transcription , Sensitivity and Specificity , RNA , Nucleic Acid Amplification Techniques
6.
Curr Oncol ; 30(8): 7189-7202, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37623002

ABSTRACT

PURPOSE: The aim of this study was to investigate the prognostic significance of PD-1 inhibitor therapy in nasopharyngeal carcinoma (NPC) and to develop a nomogram to estimate individual risks. METHODS: We retrospectively analyzed 162 NPC patients who were administered the PD-1 inhibitor combined with radiotherapy and chemotherapy at the Sun Yat-Sen University Cancer Center. In total, 108 NPC patients were included in the training cohort and 54 NPC patients were included in the validation cohort. Univariate and multivariate Cox survival analyses were performed to determine the prognostic factors for 1-year and 2-year progression-free survival (PFS). In addition, a nomogram model was constructed to predict the survival probability of PFS. A consistency index (C-index), a decision curve, a clinical impact curve, and a standard curve were used to measure predictive accuracy, the clinical net benefit, and the consistency of prognostic factors. RESULTS: Univariate and multivariate analyses indicated that the metastasis stage, the levels of ALT, the AST/ALT ratio, and the LDH were independent risk factors associated with the prognosis of PD-1 inhibitor therapy. A nomogram based on these four indicators was constructed and the Kaplan-Meier survival analysis showed that patients with a higher total score have a shorter PFS. The C-index of this model was 0.732 in the training cohort and 0.847 in the validation cohort, which are higher than those for the TNM stages (training cohort: 0.617; validation cohort: 0.727; p <0.05). Decision Curve Analysis (DCA), Net Reclassification Improvement (NRI), and Integrated Discrimination Improvement (IDI) showed that our model has better prediction accuracy than TNM staging. CONCLUSIONS: Predicting PFS in NPC patients based on liver function-related indicators before PD-1 treatment may help clinicians predict the efficacy of PD-1 treatment in these patients.


Subject(s)
Nasopharyngeal Neoplasms , Nomograms , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Liver Function Tests , Nasopharyngeal Carcinoma/drug therapy , Programmed Cell Death 1 Receptor , Retrospective Studies , Nasopharyngeal Neoplasms/drug therapy
7.
Virol J ; 20(1): 106, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248496

ABSTRACT

BACKGROUND: The pathogenicity and virulence of the Omicron strain have weakened significantly pathogenesis of Omicron variants. Accumulating data indicated accessory proteins play crucial roles in host immune evasion and virus pathogenesis of SARS-CoV-2. Therefore, the impact of simultaneous deletion of accessory protein ORF7a, ORF7b and ORF8 on the clinical characteristics and specific immunity in Omicron breakthrough infected patients (BIPs) need to be verified. METHODS: Herein, plasma cytokines were identified using a commercial Multi-cytokine detection kit. Enzyme-linked immunosorbent assay and pseudovirus neutralization assays were utilized to determine the titers of SARS-CoV-2 specific binding antibodies and neutralizing antibodies, respectively. In addition, an enzyme-linked immunospot assay was used to quantify SARS-CoV-2 specific T cells and memory B cells. RESULTS: A local COVID-19 outbreak was caused by the Omicron BA.2 variant, which featured a deletion of 871 base pairs (∆871 BA.2), resulting in the removal of ORF7a, ORF7b, and ORF8. We found that hospitalized patients with ∆871 BA.2 had significantly shorter hospital stays than those with wild-type (WT) BA.2. Plasma cytokine levels in both ∆871 BA.2 and WT BA.2 patients were within the normal range of reference, and there was no notable difference in the titers of SARS-CoV-2 ancestor or Omicron-specific binding IgG antibodies, neutralizing antibody titers, effector T cells, and memory B cells frequencies between ∆871 BA.2 and WT BA.2 infected adult patients. However, antibody titers in ∆871 BA.2 infected adolescents were higher than in adults. CONCLUSIONS: The simultaneous deletion of ORF7a, ORF7b, and ORF8 facilitates the rapid clearance of the BA.2 variant, without impacting cytokine levels or affecting SARS-CoV-2 specific humoral and cellular immunity in Omicron-infected individuals.


Subject(s)
COVID-19 , Adolescent , Adult , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , Antibodies, Viral , Cytokines , Enzyme-Linked Immunospot Assay
8.
Sci Rep ; 13(1): 7263, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37142713

ABSTRACT

The immunogenicity of SARS-CoV-2 vaccines is poor in kidney transplant recipients (KTRs). The factors related to poor immunogenicity to vaccination in KTRs are not well defined. Here, observational study demonstrated no severe adverse effects were observed in KTRs and healthy participants (HPs) after first or second dose of SARS-CoV-2 inactivated vaccine. Different from HPs with excellent immunity against SARS-CoV-2, IgG antibodies against S1 subunit of spike protein, receptor-binding domain, and nucleocapsid protein were not effectively induced in a majority of KTRs after the second dose of inactivated vaccine. Specific T cell immunity response was detectable in 40% KTRs after the second dose of inactivated vaccine. KTRs who developed specific T cell immunity were more likely to be female, and have lower levels of total bilirubin, unconjugated bilirubin, and blood tacrolimus concentrations. Multivariate logistic regression analysis found that blood unconjugated bilirubin and tacrolimus concentration were significantly negatively associated with SARS-CoV-2 specific T cell immunity response in KTRs. Altogether, these data suggest compared to humoral immunity, SARS-CoV-2 specific T cell immunity response are more likely to be induced in KTRs after administration of inactivated vaccine. Reduction of unconjugated bilirubin and tacrolimus concentration might benefit specific cellular immunity response in KTRs following vaccination.


Subject(s)
COVID-19 , Kidney Transplantation , Female , Humans , Male , Tacrolimus , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Immunity, Cellular , Bilirubin , Immunity, Humoral , Transplant Recipients , Vaccination , Antibodies, Viral
9.
Chem Eng J ; 468: 143616, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37251501

ABSTRACT

Förster or fluorescence resonance energy transfer (FRET) enables to probe biomolecular interactions, thus playing a vital role in bioassays. However, conventional FRET platforms suffer from limited sensitivity due to the low FRET efficiency and poor anti-interference of existing FRET pairs. Here we report a NIR-II (1000-1700 nm) FRET platform with extremely high FRET efficiency and exceptional anti-interference capability. This NIR-II FRET platform is established based on a pair of lanthanides downshifting nanoparticles (DSNPs) by employing Nd3+ doped DSNPs as an energy donor and Yb3+ doped DSNPs as an energy acceptor. The maximum FRET efficiency of this well-engineered NIR-II FRET platform reaches up to 92.2%, which is much higher than most commonly used ones. Owing to the all-NIR advantage (λex = 808 nm, λem = 1064 nm), this highly efficient NIR-II FRET platform exhibits extraordinary anti-interference in whole blood, and thus enabling background-free homogeneous detection of SARS-CoV-2 neutralizing antibodies in clinical whole blood sample with high sensitivity (limit of detection = 0.5 µg/mL) and specificity. This work opens up new opportunities for realizing highly sensitive detection of various biomarkers in biological samples with severe background interference.

10.
Biosens Bioelectron ; 234: 115353, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37120945

ABSTRACT

Lateral flow assays (LFAs) are promising points-of-care tests, playing a vital role in diseases screening, diagnosis and surveillance. However, development of portable, cheap, and smart LFAs platform for sensitive and accurate quantification of disease biomarkers in complex media is challenging. Here, a cheap handheld device was developed to realize on-site detection of disease biomarkers by Nd3+/Yb3+ co-doped near-infrared (NIR)-to-NIR downconversion nanoparticles (DCNPs) based LFA. Its sensitivity is at least 8-fold higher for detecting NIR light signal from Nd3+/Yb3+ co-doped nanoparticles than conventional expensive InGaAs camera based detection platform. Additionally, we enhance NIR quantum yield of Nd3+/Yb3+ co-doped nanoparticles up to 35.5% via simultaneous high dopant of sensitizer ions Nd3+ and emitter ions Yb3+. Combination of NIR-to-NIR handheld detection device and ultra-bright NIR emitting NaNbF4:Yb60%@NaLuF4 nanoparticle probe allows the detection sensitivity of SARS-CoV-2 ancestral strain and Omicron variants specific neutralizing antibodies LFA up to the level of commercial enzyme linked immunosorbent assay kit. Furthermore, by this robust method, enhanced neutralizing antibodies against SARS-CoV-2 ancestral strain and Omicron variants are observed in healthy participants with Ad5-nCoV booster on top of two doses of inactivated vaccine. This NIR-to-NIR handheld platform provides a promising strategy for on-site evaluating protective humoral immunity after SARS-CoV-2 vaccination or infection.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , COVID-19/diagnosis , COVID-19 Vaccines , SARS-CoV-2 , Vaccination , Antibodies, Neutralizing , Biomarkers , Antibodies, Viral
12.
Virol Sin ; 38(2): 233-243, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36603767

ABSTRACT

Homologous booster, heterologous booster, and Omicron variants breakthrough infection (OBI) could improve the humoral immunity against Omicron variants. Questions concerning about memory B cells (MBCs) and T cells immunity against Omicron variants, features of long-term immunity, after booster and OBI, needs to be explored. Here, comparative analysis demonstrate antibody and T cell immunity against ancestral strain, Delta and Omicron variants in Omicron breakthrough infected patients (OBIPs) are comparable to that in Ad5-nCoV boosted healthy volunteers (HVs), higher than that in inactivated vaccine (InV) boosted HVs. However, memory B cells (MBCs) immunity against Omicron variants was highest in OBIPs, followed by Ad5-nCoV boosted and InV boosted HVs. OBIPs and Ad5-nCoV boosted HVs have higher classical MBCs and activated MBCs, and lower naïve MBCs and atypical MBCs relative to both vaccine boosted HVs. Collectively, these data indicate Omicron breakthrough infection elicit higher MBCs and T cells against SARS-CoV-2 especially Omicron variants relative to homologous InV booster and heterologous Ad5-nCoV booster.


Subject(s)
Breakthrough Infections , COVID-19 , Humans , SARS-CoV-2 , Antibodies , Antibodies, Viral , Antibodies, Neutralizing
13.
J Med Virol ; 95(1): e28163, 2023 01.
Article in English | MEDLINE | ID: mdl-36127294

ABSTRACT

Little information is available for antibody levels against SARS-CoV-2 variants of concern induced by Omicron breakthrough infection and a third booster with an inactivated vaccine (InV) or Ad5-nCoV in people with completion of two InV doses. Plasma was collected from InV pre-vaccinated Omicron-infected patients (OIPs), unvaccinated OIPs between 0 and 22 days, and healthy donors (HDs) 14 days or 6 months after the second doses of an InV and 14 days after a homogenous booster or heterologous booster of Ad5-nCoV. Anti-Wuhan-, Anti-Delta-, and Anti-Omicron-receptor binding domain (RBD)-IgG titers were detected using enzyme-linked immunosorbent assay. InV pre-vaccinated OIPs had higher anti-Wuhan-, anti-Delta-, and anti-Omicron-RBD-IgG titers compared to unvaccinated OIPs. Anti-Wuhan-RBD-IgG titers sharply increased in InV pre-vaccinated OIPs 0-5 days postinfection (DPI), while the geometric mean titers (GMTs) of anti-Delta- and anti-Omicron-RBD-IgG were 3.3-fold and 12.0-fold lower. Then, the GMT of anti-Delta- and anti-Omicron-RBD-IgG increased to 35 112 and 28 186 during 11-22 DPI, about 2.6-fold and 3.2-fold lower, respectively, than the anti-Wuhan-RBD-IgG titer. The anti-Wuhan-, anti-Delta-, and anti-Omicron-RBD-IgG titers declined over time in HDs after two doses of an InV, with 25.2-fold, 5.6-fold, and 4.5-fold declination, respectively, at 6 months relative to the titers at 14 days after the second vaccination. Anti-Wuhan-, anti-Delta-, and anti-Omicron-RBD-IgG titers elicited by a heterologous Ad5-nCoV booster were significantly higher than those elicited by an InV booster, comparable to those in InV pre-vaccinated OIPs. InV and Ad5-nCoV boosters could improve humoral immunity against Omicron variants. Of these, the Ad5-nCoV booster is a better alternative.


Subject(s)
Breakthrough Infections , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
14.
Jpn J Infect Dis ; 75(2): 183-191, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-34053954

ABSTRACT

Xpert Xpress Flu/RSV is a fast and automated real-time nucleic acid amplification tool for detecting influenza virus and respiratory syncytial virus (RSV). The aim of this study was to verify the accuracy of Xpert Xpress Flu/RSV for detecting influenza virus and RSV. PubMed, EMBASE, Cochrane Library, and Web of Science databases were searched up to October 2020. The quality of the original research was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 guidelines. Meta-DiSc 1.4 software was used to analyze the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and summary receiver operating characteristic curve. Deek's funnel plot asymmetry test was used to evaluate the publication bias using the Stata 12.0 software. Ten studies with 25 fourfold tables were included in the analysis. The sensitivity of Xpert Xpress Flu/RSV for detecting influenza A, influenza B, and RSV were 0.97, 0.98, and 0.96, respectively, and the specificities were 0.97, 1.00, and 1.00, respectively. Compared with other common clinical real-time reverse transcription-polymerase chain reaction (RT-PCR), Xpert Xpress Flu/RSV is a valuable tool for diagnosing influenza virus and RSV with high sensitivity and specificity.


Subject(s)
Influenza A virus , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/diagnosis , Molecular Diagnostic Techniques , Nasopharynx , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus, Human/genetics , Sensitivity and Specificity
15.
Front Immunol ; 13: 1042784, 2022.
Article in English | MEDLINE | ID: mdl-36700230

ABSTRACT

Background: A third mRNA vaccine booster is recommended to improve immunity against SARS-CoV-2 in kidney transplant recipients (KTRs). However, the immunity against SARS-CoV-2 Ancestral strain and Delta and Omicron variants elicited by the third dose of inactivated booster vaccine in KTRs remains unknown. Methods: The blood parameters related to blood cells count, hepatic function, kidney function, heart injury and immunity were explored clinically from laboratory examinations. SARS-CoV-2 specific antibody IgG titer was detected using an enzyme-linked immunosorbent assay. Cellular immunity was analyzed using interferon-γ enzyme-linked immunospot assay. Results: The results showed that there were no severe adverse effects and apparent changes of clinical laboratory biomarkers in KTRs and healthy volunteers (HVs) after homologous inactivated vaccine booster. A third dose of inactivated vaccine booster significantly increased anti-Ancestral-spike-trimer-IgG and anti-Ancestral-receptor binding domain (RBD)-IgG titers in KTRs and HVs compared with the second vaccination. However, the anti-Delta-RBD-IgG and anti-Omicron-RBD-IgG titers were significantly lower than anti-Ancestral-RBD-IgG titer in KTRs and HVs after the third dose. Notably, only 25.6% (10/39) and 10.3% (4/39) of KTRs had seropositivity for anti-Delta-RBD-IgG and anti-Omicron-RBD-IgG after booster, which were significantly lower than HVs (anti-Delta-RBD-IgG: 100%, anti-Omicron-RBD-IgG: 77.8%). Ancestral strain nucleocapsid protein and spike specific T cell frequency after booster was not significantly increased in KTRs compared with the second dose, significantly lower than that in HVs. Moreover, 33.3% (12/36), 14.3% (3/21) and 14.3% (3/21) of KTRs were positive for the Ancestral strain and Delta and Omicron spike-specific T cells, which were significantly lower than HVs (Ancestral: 80.8%, Delta: 53.8%, and Omicron: 57.7%). Conclusions: A third dose of inactivated booster vaccine may significantly increase humoral immunity against the Ancestral strain in KTRs, while humoral and cellular immunity against the Delta and Omicron variants were still poor in KTRs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Kidney Transplantation , Humans , Antibodies, Viral , COVID-19/immunology , COVID-19/prevention & control , Enzyme-Linked Immunospot Assay , Immunoglobulin G , SARS-CoV-2 , Immunization, Secondary , COVID-19 Vaccines/immunology
16.
PLoS Negl Trop Dis ; 15(11): e0009869, 2021 11.
Article in English | MEDLINE | ID: mdl-34748586

ABSTRACT

PURPOSE: Vancomycin-resistant enterococci infection is a worrying worldwide clinical problem. To evaluate the accuracy of GeneXpert vanA/vanB in the diagnosis of VRE, we conducted a systematic review in the study. METHODS: Experimental data were extracted from publications until May 03 2021 related to the diagnostic accuracy of GeneXpert vanA/vanB for VRE in PubMed, Embase, Web of Science and the Cochrane Library. The accuracy of GeneXpert vanA/vanB for VRE was evaluated using summary receiver to operate characteristic curve, pooled sensitivity, pooled specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio. RESULTS: 8 publications were divided into 3 groups according to two golden standard references, vanA and vanB group, vanA group, vanB group, including 6 researches, 5 researches and 5 researches, respectively. The pooled sensitivity and specificity of group vanA and vanB were 0.96 (95% CI, 0.93-0.98) and 0.90 (95% CI, 0.88-0.91) respectively. The DOR was 440.77 (95% CI, 37.92-5123.55). The pooled sensitivity and specificity of group vanA were 0.86 (95% CI, 0.81-0.90) and 0.99 (95% CI, 0.99-0.99) respectively, and those of group vanB were 0.85 (95% CI, 0.63-0.97) and 0.82 (95% CI, 0.80-0.83) respectively. CONCLUSION: GeneXpert vanA/vanB can diagnose VRE with high-accuracy and shows greater accuracy in diagnosing vanA.


Subject(s)
Bacterial Proteins/genetics , Carbon-Oxygen Ligases/genetics , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/microbiology , Vancomycin-Resistant Enterococci/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Carbon-Oxygen Ligases/metabolism , Humans , Sensitivity and Specificity , Vancomycin/pharmacology , Vancomycin-Resistant Enterococci/classification , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/genetics
17.
Front Immunol ; 12: 664619, 2021.
Article in English | MEDLINE | ID: mdl-34305895

ABSTRACT

Recent studies have highlighted observations regarding re-tested positivity (RP) of SARS-CoV-2 RNA in discharged COVID-19 patients, however, the immune mechanisms underlying SARS-CoV-2 RNA RP in immunocompetent patients remain elusive. Herein, we describe the case of an immunocompetent COVID-19 patient with moderate symptoms who was twice re-tested as positive for SARS-CoV-2 RNA, and the period between first and third viral RNA positivity was 95 days, longer than previously reported (18-25 days). The chest computed tomography findings, plasma anti-SARS-CoV-2 antibody, neutralizing antibodies (NAbs) titer, and whole blood transcriptic characteristics in the viral RNA RP patient and other COVID-19 patients were analyzed. During the SARS-CoV-2 RNA RP period, new lung lesions were observed. The COVID-19 patient with viral RNA RP had delayed seroconversion of anti-spike/receptor-binding domain (RBD) IgA antibody and NAbs and were accompanied with disappearance of the lung lesions. Further experimental data validated that NAbs titer was significantly associated with anti-RBD IgA and IgG, and anti-spike IgG. The RP patient had lower interferon-, T cells- and B cell-related genes expression than non-RP patients with mild-to-moderate symptoms, and displayed lower cytokines and chemokines gene expression than severe patients. Interestingly, the RP patient had low expression of antigen presentation-related genes and low B cell counts which might have contributed to the delayed anti-RBD specific antibody and low CD8+ cell response. Collectively, delayed antigen presentation-related gene expression was found related to delayed adaptive immune response and contributed to the SARS-CoV-2 RNA RP in this described immunocompetent patient.


Subject(s)
COVID-19/immunology , COVID-19/virology , RNA, Viral/isolation & purification , Adaptive Immunity , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , Gene Expression Profiling , Humans , Immunity, Innate , Male , Middle Aged , Phosphoproteins/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Seroconversion , Spike Glycoprotein, Coronavirus/immunology
18.
J Immunol ; 206(9): 2146-2159, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33846224

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients developing severe illness or even death. Disease severity has been associated with increased levels of proinflammatory cytokines and lymphopenia. To elucidate the atlas of peripheral immune response and pathways that might lead to immunopathology during COVID-19 disease course, we performed a peripheral blood RNA sequencing analysis of the same patient's samples collected from symptom onset to full recovery. We found that PBMCs at different disease stages exhibited unique transcriptome characteristics. We observed that SARS-CoV-2 infection caused excessive release of inflammatory cytokines and lipid mediators as well as an aberrant increase of low-density neutrophils. Further analysis revealed an increased expression of RNA sensors and robust IFN-stimulated genes expression but a repressed type I IFN production. SARS-CoV-2 infection activated T and B cell responses during the early onset but resulted in transient adaptive immunosuppression during severe disease state. Activation of apoptotic pathways and functional exhaustion may contribute to the reduction of lymphocytes and dysfunction of adaptive immunity, whereas increase in IL2, IL7, and IL15 may facilitate the recovery of the number and function of lymphocytes. Our study provides comprehensive transcriptional signatures of peripheral blood response in patients with moderate COVID-19.


Subject(s)
COVID-19/blood , Cytokines/blood , Disease Progression , Inflammation Mediators/blood , Leukocytes, Mononuclear/metabolism , RNA-Seq , SARS-CoV-2/metabolism , Adult , Aged , Female , Gene Expression Regulation , Humans , Leukocytes, Mononuclear/virology , Longitudinal Studies , Male , Middle Aged
19.
Virus Evol ; 7(1): veab018, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33732504

ABSTRACT

In 2017, a survey of the molecular epidemiology of human adenovirus (HAdV) infections in Southern China based on hexon and fiber genotype demonstrated that the most prevalent genotypes of HAdV were HAdV-3 (n = 62), HAdV-2 (n = 21), and HAdV-7 (n = 16). In addition, two patients were co-infected with two genotypes of HAdV. Interestingly, a novel human adenovirus C recombinant genotype strain was isolated from one of the pneumonia patients in this survey. Phylogenetic, recombination, and proteotyping analysis showed that this novel pathogen originated from the recombination of parental viruses harboring the HAdV-1 penton and hexon gene, and the HAdV-2 fiber gene. It was named 'P1H1F2' and was assigned as HAdV-C104 based on the nomenclature protocol of using three major capsid proteins for characterization. Subsequent in vitro experiments demonstrated that HAdV-C104 had comparable proliferation capacity to HAdV-1, HAdV-2, and another recombination genotype P1H2F2. In addition, the HAdV-C104 infected patient was diagnosed with pneumonia and recovered after antiviral therapy. This report strengthens the hypothesis of recombination as a major pathway for the molecular evolution of HAdV-C species.

20.
ACS Nano ; 14(12): 16864-16874, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33295753

ABSTRACT

Luminescence nanomaterial-based lateral flow assay (LFA) is promising for point-of-care tests. However, the detection sensitivity and accuracy are often affected by the interferences of autofluorescence and photon scattering from nitrocellulose membrane and colored plasma. Here, we describe a near-infrared to near-infrared upconversion nanoparticle (UCNP) immunolabeled LFA for background-free chromatographic detection of sepsis biomarker procalcitonin (PCT) in clinical human plasma. This upconversion immunolabeling enables both light excitation (at ∼980 nm) and anti-Stokes emission (at 800 nm) to be adopted within the first biological window (700-1000 nm), which eliminates background autofluorescence as well as photon scattering interferences, empowering a high-sensitivity detection without complicated procedures. After optimization, the described assay presented a limit of detection reaching down to 0.03 ng/mL, lower than the normal level (0.05 ng/mL), while having a detection range of 0.03-50 ng/mL that covers the clinical PCT level of interest (0.5-10 ng/mL). The assay recoveries in human serum samples were evaluated to be about 95-110%, whereas the inter- and intra-assay coefficient variations were both determined to be below 15%. Importantly, measured PCT concentrations in clinical samples are in good correlation with that of the electrochemiluminescence immunoassay (Roche) widely applied in large clinical settings. This near-infrared to near-infrared upconversion immunolabeling approach has direct implications for ultrasensitive and background-free point-of-care detection of other serum biomarkers in resource-limited clinical settings.

SELECTION OF CITATIONS
SEARCH DETAIL
...