Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38417787

ABSTRACT

BACKGROUND: Preterm infants with low birth weight are at heightened risk of developmental sequelae, including neurological and cognitive dysfunction that can persist into adolescence or adulthood. In addition, preterm birth and low birth weight can provoke changes in endocrine and metabolic processes that likely impact brain health throughout development. However, few studies have examined associations among birth weight, pubertal endocrine processes, and long-term neurological and cognitive development. METHODS: We investigated the associations between birth weight and brain morphometry, cognitive function, and onset of adrenarche assessed 9 to 11 years later in 3571 preterm and full-term children using the ABCD (Adolescent Brain Cognitive Development) Study dataset. RESULTS: The preterm children showed lower birth weight and early adrenarche, as expected. Birth weight was positively associated with cognitive function (all Cohen's d > 0.154, p < .005), global brain volumes (all Cohen's d > 0.170, p < .008), and regional volumes in frontal, temporal, and parietal cortices in preterm and full-term children (all Cohen's d > 0.170, p < .0007); cortical volume in the lateral orbitofrontal cortex partially mediated the effect of low birth weight on cognitive function in preterm children. In addition, adrenal score and cortical volume in the lateral orbitofrontal cortex mediated the associations between birth weight and cognitive function only in preterm children. CONCLUSIONS: These findings highlight the impact of low birth weight on long-term brain structural and cognitive function development and show important associations with early onset of adrenarche during the puberty. This understanding may help with prevention and treatment.

2.
Neuropsychopharmacology ; 49(8): 1330-1340, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38409281

ABSTRACT

Children with ADHD show abnormal brain function and structure. Neuroimaging studies found that stimulant medications may improve brain structural abnormalities in children with ADHD. However, prior studies on this topic were conducted with relatively small sample sizes and wide age ranges and showed inconsistent results. In this cross-sectional study, we employed latent class analysis and linear mixed-effects models to estimate the impact of stimulant medications using demographic, clinical measures, and brain structure in a large and diverse sample of children aged 9-11 from the Adolescent Brain and Cognitive Development Study. We studied 273 children with low ADHD symptoms and received stimulant medication (Stim Low-ADHD), 1002 children with high ADHD symptoms and received no medications (No-Med ADHD), and 5378 typically developing controls (TDC). After controlling for the covariates, compared to Stim Low-ADHD and TDC, No-Med ADHD showed lower cortical thickness in the right insula (INS, d = 0.340, PFDR = 0.003) and subcortical volume in the left nucleus accumbens (NAc, d = 0.371, PFDR = 0.003), indicating that high ADHD symptoms were associated with structural abnormalities in these brain regions. In addition, there was no difference in brain structural measures between Stim Low-ADHD and TDC children, suggesting that the stimulant effects improved both ADHD symptoms and ADHD-associated brain structural abnormalities. These findings together suggested that children with ADHD appear to have structural abnormalities in brain regions associated with saliency and reward processing, and treatment with stimulant medications not only improve the ADHD symptoms but also normalized these brain structural abnormalities.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Attention , Brain , Central Nervous System Stimulants , Magnetic Resonance Imaging , Reward , Humans , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Child , Male , Female , Central Nervous System Stimulants/therapeutic use , Central Nervous System Stimulants/pharmacology , Cross-Sectional Studies , Brain/diagnostic imaging , Brain/drug effects , Brain/pathology , Attention/drug effects , Attention/physiology
3.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38300178

ABSTRACT

Obesity has been linked to abnormal frontal function, including the white matter fibers of anterior portion of the corpus callosum, which is crucial for information exchange within frontal cortex. However, alterations in white matter anatomical connectivity between corpus callosum and cortical regions in patients with obesity have not yet been investigated. Thus, we enrolled 72 obese and 60 age-/gender-matched normal weight participants who underwent clinical measurements and diffusion tensor imaging. Probabilistic tractography with connectivity-based classification was performed to segment the corpus callosum and quantify white matter anatomical connectivity between subregions of corpus callosum and cortical regions, and associations between corpus callosum-cortex white matter anatomical connectivity and clinical behaviors were also assessed. Relative to normal weight individuals, individuals with obesity exhibited significantly greater white matter anatomical connectivity of corpus callosum-orbitofrontal cortex, which was positively correlated with body mass index and self-reported disinhibition of eating behavior, and lower white matter anatomical connectivity of corpus callosum-prefrontal cortex, which was significantly negatively correlated with craving for high-calorie food cues. The findings show that alterations in white matter anatomical connectivity between corpus callosum and frontal regions involved in reward and executive control are associated with abnormal eating behaviors.


Subject(s)
Corpus Callosum , White Matter , Humans , Corpus Callosum/diagnostic imaging , Brain , Diffusion Tensor Imaging/methods , White Matter/diagnostic imaging , Obesity/diagnostic imaging
4.
Psychol Med ; 54(2): 409-418, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37365781

ABSTRACT

BACKGROUND: Preterm birth is a global health problem and associated with increased risk of long-term developmental impairments, but findings on the adverse outcomes of prematurity have been inconsistent. METHODS: Data were obtained from the baseline session of the ongoing longitudinal Adolescent Brain and Cognitive Development (ABCD) Study. We identified 1706 preterm children and 1865 matched individuals as Control group and compared brain structure (MRI data), cognitive function and mental health symptoms. RESULTS: Results showed that preterm children had higher psychopathological risk and lower cognitive function scores compared to controls. Structural MRI analysis indicated that preterm children had higher cortical thickness in the medial orbitofrontal cortex, parahippocampal gyrus, temporal and occipital gyrus; smaller volumes in the temporal and parietal gyrus, cerebellum, insula and thalamus; and smaller fiber tract volumes in the fornix and parahippocampal-cingulum bundle. Partial correlation analyses showed that gestational age and birth weight were associated with ADHD symptoms, picvocab, flanker, reading, fluid cognition composite, crystallized cognition composite and total cognition composite scores, and measures of brain structure in regions involved with emotional regulation, attention and cognition. CONCLUSIONS: These findings suggest a complex interplay between psychopathological risk and cognitive deficits in preterm children that is associated with changes in regional brain volumes, cortical thickness, and structural connectivity among cortical and limbic brain regions critical for cognition and emotional well-being.


Subject(s)
Premature Birth , Child , Female , Adolescent , Infant, Newborn , Humans , Brain/pathology , Cognition/physiology , Infant, Premature , Longitudinal Studies , Magnetic Resonance Imaging/methods
5.
Biol Psychiatry ; 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37480977

ABSTRACT

BACKGROUND: Neuroimaging studies have revealed alterations in habenular (Hb) structure and functional connectivity (FC) in psychiatric conditions. The Hb plays a particularly critical role in regulating negative emotions, which trigger excessive food intake and obesity. However, obesity and weight loss intervention (i.e., laparoscopic sleeve gastrectomy [LSG])-associated changes in Hb structure and FC have not been studied. METHODS: We used voxel-based morphometry analysis to measure changes in gray matter volume (GMV) in the Hb in 56 patients with obesity at pre-LSG and 12 months post-LSG and in 78 normal-weight (NW) control participants. Then, we conducted Hb seed-based resting-state FC (RSFC) to examine obesity-related and LSG-induced alterations in RSFC. Finally, we used mediation analysis to characterize the interrelationships among Hb GMV, RSFC, and behaviors. RESULTS: Compared with NW participants, Hb GMV was smaller in patients at pre-LSG and increased at 12 months post-LSG to levels equivalent to that of NW; in addition, increases in Hb GMV were correlated with reduced body mass index (BMI). Compared with NW participants, pre-LSG patients showed greater RSFCs of the Hb-insula, Hb-precentral gyrus, and Hb-rolandic operculum and weaker RSFCs of the Hb-thalamus, Hb-hypothalamus, and Hb-caudate; LSG normalized these RSFCs. Decreased RSFC of the Hb-insula was correlated with reduced BMI, Yale Food Addiction Scale rating, and emotional eating; reduced hunger levels were correlated with increased RSFCs of the Hb-thalamus and Hb-hypothalamus; and reduced BMI and Yale Food Addiction Scale ratings were correlated with increased RSFCs of the Hb-thalamus and Hb-hypothalamus, respectively. The bidirectional relationships between Hb GMV and RSFC of the Hb-insula contributed to reduced BMI. CONCLUSIONS: These findings indicate that LSG increased Hb GMV and that its related improvement in RSFC of the Hb-insula may mediate long-term benefits of LSG for eating behaviors and weight loss.

6.
Cereb Cortex ; 33(18): 10087-10097, 2023 09 09.
Article in English | MEDLINE | ID: mdl-37522299

ABSTRACT

Pediatric overweight/obesity can lead to sleep-disordered breathing (SDB), abnormal neurological and cognitive development, and psychiatric problems, but the associations and interactions between these factors have not been fully explored. Therefore, we investigated the associations between body mass index (BMI), SDB, psychiatric and cognitive measures, and brain morphometry in 8484 children 9-11 years old using the Adolescent Brain Cognitive Development dataset. BMI was positively associated with SDB, and both were negatively correlated with cortical thickness in lingual gyrus and lateral orbitofrontal cortex, and cortical volumes in postcentral gyrus, precentral gyrus, precuneus, superior parietal lobule, and insula. Mediation analysis showed that SDB partially mediated the effect of overweight/obesity on these brain regions. Dimensional psychopathology (including aggressive behavior and externalizing problem) and cognitive function were correlated with BMI and SDB. SDB and cortical volumes in precentral gyrus and insula mediated the correlations between BMI and externalizing problem and matrix reasoning ability. Comparisons by sex showed that obesity and SDB had a greater impact on brain measures, cognitive function, and mental health in girls than in boys. These findings suggest that preventing childhood obesity will help decrease SDB symptom burden, abnormal neurological and cognitive development, and psychiatric problems.


Subject(s)
Pediatric Obesity , Sleep Apnea Syndromes , Male , Female , Adolescent , Humans , Child , Body Mass Index , Overweight , Polysomnography/methods , Sleep Apnea Syndromes/diagnostic imaging , Sleep Apnea Syndromes/complications , Brain/diagnostic imaging
7.
Obesity (Silver Spring) ; 31(6): 1634-1643, 2023 06.
Article in English | MEDLINE | ID: mdl-37203333

ABSTRACT

OBJECTIVE: The goal of this study was to investigate laparoscopic sleeve gastrectomy (LSG)-induced changes in choice impulsivity and the neural correlates in individuals with obesity (OB). METHODS: The study employed functional magnetic resonance imaging with a delay discounting task in 29 OB tested before and 1 month after LSG. Thirty participants with normal weight matched to OB with gender and age were recruited as the control group and underwent an identical functional magnetic resonance imaging scan. Alterations in activation and functional connectivity between pre- and post-LSG were investigated and compared with participants with normal weight. RESULTS: OB exhibited significantly reduced discounting rate after LSG. During the delay discounting task, hyperactivation in dorsolateral prefrontal cortex, right caudate, and dorsomedial prefrontal cortex decreased in OB after LSG. LSG additionally engaged compensatory effects through increased activation in bilateral posterior insula and functional connectivity between caudate and dorsomedial prefrontal cortex. Those changes were associated with decreased discounting rate and BMI as well as improved eating behaviors. CONCLUSIONS: These findings indicate that decreased choice impulsivity following LSG was associated with the changes in regions involved in executive control, reward evaluation, interoception, and prospection. This study may provide neurophysiological support for the development of nonoperative treatments such as brain stimulation for individuals with obesity and overweight.


Subject(s)
Delay Discounting , Laparoscopy , Humans , Delay Discounting/physiology , Impulsive Behavior , Obesity/surgery , Laparoscopy/methods , Gastrectomy/methods , Magnetic Resonance Imaging/methods
8.
Mol Psychiatry ; 28(4): 1466-1479, 2023 04.
Article in English | MEDLINE | ID: mdl-36918706

ABSTRACT

Obesity has tripled over the past 40 years to become a major public health issue, as it is linked with increased mortality and elevated risk for various physical and neuropsychiatric illnesses. Accumulating evidence from neuroimaging studies suggests that obesity negatively affects brain function and structure, especially within fronto-mesolimbic circuitry. Obese individuals show abnormal neural responses to food cues, taste and smell, resting-state activity and functional connectivity, and cognitive tasks including decision-making, inhibitory-control, learning/memory, and attention. In addition, obesity is associated with altered cortical morphometry, a lowered gray/white matter volume, and impaired white matter integrity. Various interventions and treatments including bariatric surgery, the most effective treatment for obesity in clinical practice, as well as dietary, exercise, pharmacological, and neuromodulation interventions such as transcranial direct current stimulation, transcranial magnetic stimulation and neurofeedback have been employed and achieved promising outcomes. These interventions and treatments appear to normalize hyper- and hypoactivations of brain regions involved with reward processing, food-intake control, and cognitive function, and also promote recovery of brain structural abnormalities. This paper provides a comprehensive literature review of the recent neuroimaging advances on the underlying neural mechanisms of both obesity and interventions, in the hope of guiding development of novel and effective treatments.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Brain/pathology , Obesity/therapy , Magnetic Resonance Imaging/methods , Gray Matter
9.
Cereb Cortex ; 33(5): 2037-2047, 2023 02 20.
Article in English | MEDLINE | ID: mdl-35580853

ABSTRACT

Habenular (Hb) processes negative emotions that may drive compulsive food-intake. Its functional changes were reported following laparoscopic-sleeve-gastrectomy (LSG). However, structural connectivity (SC) of Hb-homeostatic/hedonic circuits after LSG remains unclear. We selected regions implicated in homeostatic/hedonic regulation that have anatomical connections with Hb as regions-of-interest (ROIs), and used diffusion-tensor-imaging with probabilistic tractography to calculate SC between Hb and these ROIs in 30 obese participants before LSG (PreLSG) and at 12-month post-LSG (PostLSG12) and 30 normal-weight controls. Three-factor-eating-questionnaire (TFEQ) and Dutch-eating-behavior-questionnaire (DEBQ) were used to assess eating behaviors. LSG significantly decreased weight, negative emotion, and improved self-reported eating behavior. LSG increased SC between the Hb and homeostatic/hedonic regions including hypothalamus (Hy), bilateral superior frontal gyri (SFG), left amygdala (AMY), and orbitofrontal cortex (OFC). TFEQ-hunger negatively correlated with SC of Hb-Hy at PostLSG12; and increased SC of Hb-Hy correlated with reduced depression and DEBQ-external eating. TFEQ-disinhibition negatively correlated with SC of Hb-bilateral SFG at PreLSG. Increased SC of Hb-left AMY correlated with reduced DEBQ-emotional eating. Higher percentage of total weight-loss negatively correlated with SC of Hb-left OFC at PreLSG. Enhanced SC of Hb-homeostatic/hedonic regulatory regions post-LSG may contribute to its beneficial effects in improving eating behaviors including negative emotional eating, and long-term weight-loss.


Subject(s)
Laparoscopy , Obesity, Morbid , Humans , Feeding Behavior/physiology , Obesity, Morbid/psychology , Obesity, Morbid/surgery , Emotions , Gastrectomy , Weight Loss/physiology , Treatment Outcome
10.
Global Spine J ; 13(5): 1229-1237, 2023 Jun.
Article in English | MEDLINE | ID: mdl-34569334

ABSTRACT

STUDY DESIGN: A prospective, randomized, double-blind, placebo-controlled study. OBJECTIVES: There are few studies examining the balance between preventing venous thrombus embolism (VTE) and reducing blood loss in posterior/transforaminal lumbar interbody fusion (PLIF/TLIF) surgeries. This study aimed to evaluate the efficacy and safety of the combine application of TXA and rivaroxaban in patients undergoing PLIF/TLIF and explore relevant factors related to blood loss and VTE. METHODS: Patients in group A which was the control group received 0.9% NaCl solution intravenously. Group B was treated by an intravenous injection of 2 g tranexamic acid (TXA) and the local use of 1 g intraoperatively. Group C was treated the same as group B intraoperatively, and they received 10 mg rivaroxaban qd treatment postoperatively. Eligible patients with an Autar score ≤ 10 were randomly assigned to group A or group B. Patients with an Autar score >10 were allocated into group C. RESULTS: The intraoperative blood loss and postoperative drainage were lower in groups B and C than in group A (P < .001). The blood transfusion rate in group B was lower than that in group A (P < .001), while the incidence of VTE in group C was lower (P < .001). Four factors were found to be positively correlated with obvious total blood loss (P < .05). The data showed that 5 factors were correlated with the development of a thrombus (P < .1). CONCLUSIONS: The combination of TXA and rivaroxaban in PLIF/TLIF patients is safe and effective in reducing D-dimer levels associated with VTE and reducing blood loss.

11.
Cereb Cortex ; 33(10): 6335-6344, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36573454

ABSTRACT

To investigate the neural mechanisms underlying the association between poorer working memory performance and higher body mass index (BMI) in children. We employed structural-(sMRI) and functional magnetic resonance imaging (fMRI) with a 2-back working memory task to examine brain abnormalities and their associations with BMI and working memory performance in 232 children with overweight/obesity (OW/OB) and 244 normal weight children (NW) from the Adolescent Brain Cognitive Development dataset. OW/OB had lower working memory accuracy, which was associated with higher BMI. They showed smaller gray matter (GM) volumes in the left superior frontal gyrus (SFG_L), dorsal anterior cingulate cortex, medial orbital frontal cortex, and medial superior frontal gyrus, which were associated with lower working memory accuracy. During the working memory task, OW/OB relative to NW showed weaker activation in the left superior temporal pole, amygdala, insula, and bilateral caudate. In addition, caudate activation mediated the relationship between higher BMI and lower working memory accuracy. Higher BMI is associated with smaller GM volumes and weaker brain activation in regions involved with working memory. Task-related caudate dysfunction may account for lower working memory accuracy in children with higher BMI.


Subject(s)
Gray Matter , Memory, Short-Term , Adolescent , Humans , Child , Gray Matter/diagnostic imaging , Gray Matter/pathology , Memory, Short-Term/physiology , Body Mass Index , Brain/diagnostic imaging , Brain/pathology , Obesity , Magnetic Resonance Imaging/methods , Overweight/pathology , Memory Disorders/pathology , Cognition
12.
Cereb Cortex ; 33(7): 3674-3682, 2023 03 21.
Article in English | MEDLINE | ID: mdl-35989308

ABSTRACT

Childhood obesity has become a global health problem. Previous studies showed that childhood obesity is associated with brain structural differences relative to controls. However, few studies have been performed with longitudinal evaluations of brain structural developmental trajectories in childhood obesity. We employed voxel-based morphometry (VBM) analysis to assess gray matter (GM) volume at baseline and 2-year follow-up in 258 obese children (OB) and 265 normal weight children (NW), recruited as part of the National Institutes of Health Adolescent Brain and Cognitive Development study. Significant group × time effects on GM volume were observed in the prefrontal lobe, thalamus, right precentral gyrus, caudate, and parahippocampal gyrus/amygdala. OB compared with NW had greater reductions in GM volume in these regions over the 2-year period. Body mass index (BMI) was negatively correlated with GM volume in prefrontal lobe and with matrix reasoning ability at baseline and 2-year follow-up. In OB, Picture Test was positively correlated with GM volume in the left orbital region of the inferior frontal gyrus (OFCinf_L) at baseline and was negatively correlated with reductions in OFCinf_L volume (2-year follow-up vs. baseline). These findings indicate that childhood obesity is associated with GM volume reduction in regions involved with reward evaluation, executive function, and cognitive performance.


Subject(s)
Gray Matter , Pediatric Obesity , Adolescent , Humans , Child , Gray Matter/diagnostic imaging , Longitudinal Studies , Pediatric Obesity/diagnostic imaging , Cerebral Cortex , Brain/diagnostic imaging , Magnetic Resonance Imaging
13.
Neurol Sci ; 43(11): 6495-6504, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35840872

ABSTRACT

BACKGROUND : Patients with functional constipation (FCon) have been reported with brain functional and structural abnormalities. However, no studies have been performed to investigate the differences in resting-state networks (RSNs) and changes in functional connectivity (FC) between RSNs in patients with FCon. Thus, the current study aimed to identify abnormal FC within and interaction between RSNs in patients with FCon to reveal the underlying neural mechanism. METHODS: Functional MRI with independent component analysis was applied to investigate alterations in FC within and functional network connectivity (FNC) between RSNs including default mode- (DMN), basal ganglia- (BGN), salience- (SN), and left and right control executive-networks (LCEN/RCEN) in 39 female patients with FCon and 36 female healthy controls (HC). Patient Assessment of Constipation Quality of Life Scale (PAC-QOL) and Patient Assessment of Constipation Symptom Scale (PAC-SYM) were used to assess the constipation symptoms. RESULTS: FCon patients had changed regional FC between different networks contributing to the abnormal FNC among RSNs compared with HC. Patients with greater stool syndromes had increased FNC of BGN-SN and DMN-LCEN, and patients with greater worries/concerns and PAC-QOL total score had reduced FNC of SN-RCEN. The greater strength changes in FC in prefrontal and parietal cortices were associated with higher negative emotion scores and greater rectal symptoms, respectively. CONCLUSION: The findings suggested that FCon patients had altered FC within and interactions between RSNs and the brain FC changes were associated with constipation symptoms and altered emotions.


Subject(s)
Brain Mapping , Quality of Life , Humans , Female , Brain/diagnostic imaging , Magnetic Resonance Imaging , Constipation/diagnostic imaging
14.
Food Chem ; 248: 146-154, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29329838

ABSTRACT

The physicochemical properties of tea extracts are significantly affected by the extraction method. The aim of this study was to compare the effects of static and dynamic extractions on the concentrations of chemical components and taste quality of green tea extracts. Our results show that extraction of chemical components using static extraction follows a pseudo-second-order reaction, while that of dynamic extraction follows a first-order reaction. The concentrations of the solids, polyphenols, and free amino acids in green tea extract prepared by dynamic extraction were much higher, although the overall yields were not significantly different between the two extraction methods. Green tea extracts obtained via dynamic extraction were of lower bitterness and astringency, as well and higher intensities of umami and overall acceptability. These results suggest that dynamic extraction is more suitable for the processing of green tea concentrate because of the higher concentration of green tea extract.


Subject(s)
Chemical Fractionation/methods , Taste , Tea/chemistry , Adult , Amino Acids/analysis , Amino Acids/chemistry , Catechin/analysis , Catechin/chemistry , Female , Humans , Male , Middle Aged , Plant Extracts/chemistry , Polyphenols/analysis , Polyphenols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...