Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(5): e17314, 2024 May.
Article in English | MEDLINE | ID: mdl-38747309

ABSTRACT

Unveiling spatial variation in vegetation resilience to climate extremes can inform effective conservation planning under climate change. Although many conservation efforts are implemented on landscape scales, they often remain blind to landscape variation in vegetation resilience. We explored the distribution of drought-resilient vegetation (i.e., vegetation that could withstand and quickly recover from drought) and its predictors across a heterogeneous coastal landscape under long-term wetland conversion, through a series of high-resolution satellite image interpretations, spatial analyses, and nonlinear modelling. We found that vegetation varied greatly in drought resilience across the coastal wetland landscape and that drought-resilient vegetation could be predicted with distances to coastline and tidal channel. Specifically, drought-resilient vegetation exhibited a nearly bimodal distribution and had a seaward optimum at ~2 km from coastline (corresponding to an inundation frequency of ~30%), a pattern particularly pronounced in areas further away from tidal channels. Furthermore, we found that areas with drought-resilient vegetation were more likely to be eliminated by wetland conversion. Even in protected areas where wetland conversion was slowed, drought-resilient vegetation was increasingly lost to wetland conversion at its landward optimum in combination with rapid plant invasions at its seaward optimum. Our study highlights that the distribution of drought-resilient vegetation can be predicted using landscape features but without incorporating this predictive understanding, conservation efforts may risk failing in the face of climate extremes.


Subject(s)
Climate Change , Conservation of Natural Resources , Droughts , Wetlands , Plants , Models, Theoretical , Satellite Imagery
2.
Molecules ; 27(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35335384

ABSTRACT

Solvent-assisted grinding (SAG) and solution slow evaporation (SSE) methods are generally used for the preparation of cocrystals. However, even by using the same solvent, active pharmaceutical ingredient (API), and cocrystal coformer (CCF), the cocrystals prepared using the two methods above are sometimes inconsistent. In the present study, in the cocrystal synthesis of praziquantel (PRA) with polyhydroxy phenolic acid, including protocatechuic acid (PA), gallic acid (GA), and ferulic acid (FA), five different cocrystals were prepared using SAG and SSE. Three of the cocrystals prepared using the SAG method have the structural characteristics of carboxylic acid dimer, and two cocrystals prepared using the SSE method formed cocrystal solvates with the structural characteristics of carboxylic acid monomer. For phenolic acids containing only one phenolic hydroxyl group (ferulic acid), when preparing cocrystals with PRA by using SAG and SSE, the same product was obtained. In addition, the weak molecular interactions that were observed in the cocrystal are explained at the molecular level by using theoretical calculation methods. Finally, the in vitro solubility of cocrystals without crystal solvents and in vivo bioavailability of PRA-FA were evaluated to further understand the influence on the physicochemical properties of API for the introduction of CCF.


Subject(s)
Praziquantel , Biological Availability , Crystallization/methods , Hydroxybenzoates , Solubility
3.
Xenobiotica ; 50(5): 593-601, 2020 May.
Article in English | MEDLINE | ID: mdl-31505985

ABSTRACT

Lovastatin shows low bioavailability (lower than 5%) after oral administration because of the poor aqueous solubility and widely metabolized by CYP3A4.Lovastatin solid dispersion was designed to enhance the dissolution. The in vitro intestinal absorption study indicated an increase in the apparent permeability of different intestinal segments compared with crude lovastatin. In the range of 12.5-50 µg/ml, the absorption of both lovastatin and lovastatin solid dispersion were found to be a passive process in rat's jejunum and ileum, but not endocytosis process. CYP3A4 inhibitor (ketoconazole) significantly increased the intestinal absorption of lovastatin and lovastatin solid dispersion. However, P-glycoprotein efflux inhibitor (verapamil) had little effect on them.The absolute bioavailability of lovastatin and lovastatin acid after oral administration of lovastatin solid dispersion were increased by about 2.01-fold and 1.40-fold than that of lovastatin suspension. The oral bioavailability of lovastatin and lovastatin acid after oral administration of lovastatin solid dispersion with 10 mg/kg kaempferol (CYP3A4 inhibitor) were increased about 3.79-fold and 2.51-fold than that of lovastatin suspension, and the absolute bioavailability of lovastatin was up to 33.0%.As a result, co-administration of lovastatin solid dispersion with kaempferol could be a promising delivery system to improve the oral bioavailability of lovastatin.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Kaempferols/metabolism , Lovastatin/metabolism , Administration, Oral , Animals , Biological Availability , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Intestinal Absorption , Kaempferols/administration & dosage , Lovastatin/administration & dosage , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...