Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 440: 138244, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38142554

ABSTRACT

Flusilazole is a triazole fungicide with residues that are potentially toxic to humans. It enters the human body mainly through food, although its bactericidal activity is substantial. In this study, an electrochemical sensor Fe/Fe2O3@C with a core-shell structure was constructed to efficiently detect flusilazole by annealing MIL-53(Fe) which was prepared by a simple solvothermal method. Transmission electron microscopy and scanning electron microscopy were used to characterize the apparent morphology of MIL-53(Fe) and Fe/Fe2O3@C, and their structures were further characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, powder X-ray diffraction, and the mapping of elements by energy dispersive spectroscopy. The electrochemical behavior of Fe/Fe2O3@C in the detection of flusilazole was evaluated by differential pulse voltammetry under optimal conditions. The results of the study indicate that the Fe/Fe2O3@C electrochemical sensor displayed excellent detection capabilities for flusilazole, where the sensor exhibited a wide detection range from 1.00 × 10-4 to 1.00 × 10-12 mol/L with an incredibly low LOD of 593 fM, making it highly sensitive to trace amounts of flusilazole. Moreover, Fe/Fe2O3@C demonstrated superior reproducibility, stability, and resistance to interference, highlighting its reliability in practical applications. The sensor was also successfully utilized to quantitatively detect flusilazole in various real samples, which suggests that Fe/Fe2O3@C has broad-spectrum environmental resistance and can effectively and rapidly detect flusilazole residues in different types of food items and environmental matrices. The study also delved into the mechanism of Fe/Fe2O3@C for the detection of flusilazole, providing a deeper understanding of the functionality of this sensor. Overall, these findings emphasize the practical significance of Fe/Fe2O3@C as an electrochemical sensor, showcasing its potential for real-world applications in food safety and environmental monitoring.


Subject(s)
Food Safety , Silanes , Triazoles , Humans , Reproducibility of Results , Microscopy, Electron, Scanning , Electrochemical Techniques/methods
2.
Food Chem ; 428: 136802, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37421661

ABSTRACT

Diflubenzuron is widely used as a benzoylurea insecticide, and its impact on human health should not be underestimated. Therefore, the detection of its residues in food and the environment is crucial. In this paper, octahedral Cu-BTB was fabricated using a simple hydrothermal method. It served as a precursor for synthesizing Cu/Cu2O/CuO@C with a core-shell structure through annealing, creating an electrochemical sensor for the detection of diflubenzuron. The response of Cu/Cu2O/CuO@C/GCE, expressed as ΔI/I0 exhibited a linear correlation with the logarithm of the diflubenzuron concentration ranging from 1.0 × 10-4 to 1.0 × 10-12 mol·L-1. The limit of detection (LOD) was determined to be 130 fM using differential pulse voltammetry (DPV). The electrochemical sensor demonstrated excellent stability, reproducibility, and anti-interference properties. Moreover, Cu/Cu2O/CuO@C/GCE was successfully employed to quantitatively determine diflubenzuron in actual food samples (tomato and cucumber) and environmental samples (Songhua River water, tap water, and local soil) with good recoveries. Finally, the possible mechanism of Cu/Cu2O/CuO@C/GCE for monitoring diflubenzuron was thoroughly investigated.


Subject(s)
Diflubenzuron , Humans , Reproducibility of Results , Copper/chemistry , Water , Electrochemical Techniques/methods , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...